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Abstract

■ Adults are capable of either differentiating or integrating sim-
ilar events in memory based on which representations are opti-
mal for a given situation. Yet how children represent related
memories remains unknown. Here, children (7–10 years old)
and adults formed memories for separate yet overlapping events.
We then measured how successfully remembered events were
represented and reinstated using fMRI. We found that children
formed differentiated representations in the hippocampus—
such that related events were stored as less similar to one another
compared with unrelated events. Conversely, adults formed

integrated representations, wherein related events were stored
as more similar, including in medial prefrontal cortex. Further-
more, hippocampal differentiation among children and medial
prefrontal cortex integration among adults tracked neocortical
reinstatement of the specific features associated with the individ-
ual events. Together, these findings reveal that the same memory
behaviors are supported by different underlying representations
across development. Specifically, whereas differentiation underlies
memory organization and retrieval in childhood, integration
exhibits a protracted developmental trajectory. ■

INTRODUCTION

In everyday and educational contexts alike, we regularly
encounter overlapping information. In the adult brain,
such overlap can yield representations for related events
that are alternately less similar, that is, differentiated
(Chanales, Oza, Favila, & Kuhl, 2017; Favila, Chanales, &
Kuhl, 2016; Hulbert & Norman, 2015) or more similar, that
is, integrated (Molitor, Sherrill, Morton, Miller, & Preston,
2021; Collin, Milivojevic, & Doeller, 2015; Schlichting,
Mumford, & Preston, 2015) to one another relative to
unrelated events. Although these discrepant differenti-
ated and integrated traces may both enable later neocor-
tical reinstatement of event features, they may ultimately
support different behaviors depending on the task
demands, namely, memory specificity and flexibility,
respectively. Yet, and despite much theoretical interest
in this topic (Keresztes, Ngo, Lindenberger, Werkle-
Bergner, & Newcombe, 2018; Bauer & Varga, 2017), how
children represent related experiences to enable success-
ful memory reinstatement and memory-guided behavior
remains unknown. Here, we measure such representa-
tions directly to test the hypothesis that children and
adults achieve memory success through fundamentally
different representational schemes due to ongoing

maturation of the hippocampus andmedial prefrontal cor-
tex (mPFC) across childhood and adolescence (Bauer,
Dugan, Varga, & Riggins, 2019; Keresztes et al., 2018;
Schlichting, Guarino, Schapiro, Turk-Browne, & Preston,
2017; Ghetti & Bunge, 2012; Østby et al., 2009). As chil-
dren’s abilities to successfully encode and retrieve memo-
ries for related events predict flexible memory behavior
(Bauer & San Souci, 2010) and in turn academic success
(Varga, Esposito, & Bauer, 2019), isolating the representa-
tions that children leverage during successful memory
retrieval is key.

Although children can successfully retrieve and make
flexible decisions about overlapping experiences (Ngo,
Newcombe, & Olson, 2018; Rollins & Cloude, 2018;
Schlichting et al., 2017; Bauer & San Souci, 2010), the neu-
ral organizational scheme that supports these behaviors
has not been identified. For example, children can draw
novel connections across memories to make inferences
(Shing et al., 2019; Schlichting et al., 2017) and generate
new knowledge (Bauer, Cronin-Golomb, Porter, Jaganjac,
& Miller, 2021; Bauer & San Souci, 2010) at above-chance
levels, albeit not as well as adults (Bauer et al., 2021; Shing
et al., 2019; Schlichting et al., 2017). However, behavioral
success on such tasks should not be taken as evidence of
any particular neural organizational scheme, as it can be
supported by a variety of different underlying representa-
tional codes (Varga, Morton, & Preston, 2024; Schlichting
& Preston, 2015; Preston&Eichenbaum, 2013; Kumaran&
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McClelland, 2012). For instance, inference behavior may
be underpinned by either directly accessing integrated
neural representations (Molitor et al., 2021; Varga &
Manns, 2021; Schlichting et al., 2015; Schlichting &
Preston, 2014; Zeithamova, Dominick, & Preston,
2012) or recombining separate memories as needed
(Schlichting, Guarino, Roome, & Preston, 2022; Wilson
& Bauer, 2021; Bauer, Varga, King, Nolen, & White, 2015).

Moreover, integration in the adult brain arises during
learning, even in the absence of any requirement to make
inferences (Molitor et al., 2021; Varga & Manns, 2021;
Schlichting et al., 2015; Schlichting & Preston, 2014;
Zeithamova et al., 2012). Such evidence indicates that
neural coding schemes are a means through which adults
organize overlapping information, further highlighting the
distinction between underlying neural representation and
overt behavior. Current developmental theories
stemming from behavioral work alternately suggest that
children rely more on either representation of common-
alities (Keresztes et al., 2018) or storage of distinct mem-
ory traces (Schlichting et al., 2022; Bauer & Varga, 2017)
to represent related events. The coexistence of such per-
spectives underscores the challenges associated with
drawing conclusions about representation from behavior
alone, as well as the need to measure underlying neural
representations directly. Here, we address this challenge,
testing whether integrated or differentiated neural organi-
zation supports overlapping memory in children.

We hypothesize that hippocampus and mPFC may be
the source of developmental differences in neural organi-
zation of highly related events. The hippocampus has
been shown to store both integrated and differentiated
traces in adults, flexibly aligning representations based
on task demands or goals (Molitor et al., 2021; Chanales
et al., 2017; Favila et al., 2016; Collin et al., 2015; Hulbert
& Norman, 2015; Schlichting et al., 2015). Prior adult data
further implicate mPFC in integration of related events
(Varga et al., 2024; Schlichting & Preston, 2015; Preston
& Eichenbaum, 2013; Zeithamova et al., 2012), showing
that mPFC represents connections across learning expe-
riences regardless of the surface features of the task
(Morton, Schlichting, & Preston, 2020; Schlichting et al.,
2015). Consistent with the notion that memory develop-
mentmay entail a shift from greater reliance on hippocam-
pus in childhood tomPFC in adulthood (Brod, Lindenberger,
& Shing, 2017), children have been shown to engage hip-
pocampus while retrieving related experiences (Sastre,
Wendelken, Lee, Bunge, & Ghetti, 2016). Specifically, chil-
dren show greater hippocampal activation when they suc-
cessfully recall the details of specific yet overlapping
events, relative towhen they are unsuccessful (Sastre et al.,
2016). The developing hippocampusmay thus show a bias
toward disambiguating—or differentiating—related
events earlier in life, a neural organizational scheme that
may be especially important in childhood as a means of
minimizing interference between highly similar events
(Darby & Sloutsky, 2015).

However, these past findings cannot tell us how related
experiences are organized in the hippocampus andmPFC,
nor whether there are developmental differences in the
neural organization that supports successful retrieval. Ask-
ing this question requires going beyond measuring
whether a region is more or less active at different ages,
but rather requires quantifying the similarity of represen-
tational patterns for related events (Kazemi, Coughlin,
DeMaster, & Ghetti, 2022; Callaghan et al., 2021; Fandakova,
Leckey, Driver, Bunge, & Ghetti, 2019; Qin et al., 2014),
which has yet to be done in a developmental memory
investigation in either hippocampus or mPFC. Given that
PFC (Fandakova et al., 2017; Østby et al., 2009; Ofen et al.,
2007; Gogtay et al., 2004) and its connectivity to hippo-
campus (Calabro, Murty, Jalbrzikowski, Tervo-Clemmens,
& Luna, 2020; Simmonds, Hallquist, Asato, & Luna, 2014)
continues to mature through the third decade of life (see
Murty, Calabro, & Luna, 2016, for a review), we anticipated
that integration mechanisms supported by this region
would be late to emerge. Specifically, we predicted that
adults, but not children, would show memory integration
inmPFC.We further predicted that childrenwould instead
form differentiated representations for related events in
the hippocampus, due to earlier maturity of this region rel-
ative to mPFC (Brod et al., 2017; Murty et al., 2016), and
extant work showing that children engage the hippocam-
pus during successful overlappingmemory retrieval (Sastre
et al., 2016).
Consistent with these predictions, one recent study sug-

gests that younger participants are less likely to form inte-
grated memories relative to adults (Schlichting et al.,
2022). That study examined how participants reactivated
a previous memory as they encoded a new, overlapping
event. Whereas adults reactivated related memories dur-
ing encoding, in younger participants, such reactivation
was reduced or even absent. This study implies a develop-
mental shift from storing related memories in nonoverlap-
ping neural representations to increasingly overlapping—or
integrated—representations, which further complements
recent data showing that hippocampal differentiation is at
least partially operational in childhood (Benear et al.,
2022). However, neither of these studies measured neural
representational schemes for related events that were
newly learned and subsequently successfully remem-
bered, and therefore cannot address how overlapping
events are organized in the developing brain to support
memory behavior. Here, we measure the organizational
schemes in hippocampus and mPFC for newly formed
memories in children and adults as they make memory-
based decisions as well as how those representations
relate to successful behavior at different ages.
We also interrogate the relationship between neural

organization and neocortical reinstatement of associated
memory features. In addition to organizing related events
through differentiation or integration, hippocampal repre-
sentations also bind distributed neocortical traces
together, enabling high-fidelity reinstatement of individual
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event features at retrieval (Marr, 1971). Similarly, the
mature mPFC is thought to combine distributed cortical
input into situational models of the environment (Chan,
Niv, & Norman, 2016; Schuck, Cai, Wilson, & Niv, 2016;
Wikenheiser & Schoenbaum, 2016), sometimes referred
to as memory schemas (Varga et al., 2024), that can later
be retrieved to support both new learning and flexible
decision-making (Preston & Eichenbaum, 2013). The way
in which both hippocampal and mPFC representations are
organized may thus have downstream consequences for
neocortical reinstatement and, in turn, memory behavior.
Past work has shown that hippocampus plays a key role

in guiding neocortical reinstatement in adults, with hippo-
campal BOLD activation tracking the degree to which
memory elements are reinstated in neocortex (Trelle et al.,
2020; Ritchey, Wing, LaBar, & Cabeza, 2013). Stronger
neocortical reinstatement, in turn, has been associated
with successful and faster memory decisions (Mack &
Preston, 2016; Kuhl & Chun, 2014). Here, we ask whether
memory reinstatement in higher-order perceptual
regions, namely, ventral temporal cortex (VTC) and parie-
tal cortex (Trelle et al., 2020; Kuhl & Chun, 2014), predicts
upcoming mnemonic decision success in children as it
does in adults (Mack & Preston, 2016). Furthermore, we
interrogate whether this degree of neocortical reinstate-
ment tracks how related events are represented relative
to one another in hippocampus and mPFC. We test
whether different representational schemes—differentiation
and integration—lead to high-fidelity neocortical reinstate-
ment in children and adults, respectively. Linking successful
memory reinstatement to distinct neural organizational
schemes in children and adults has important implications
not just for foundational theories of memory development
(Reyna & Brainerd, 2011) but also for educational practices
that seek tomaximizememory retention and flexibility at dif-
ferent ages (Brod, 2021).
In the present study, children and adults learned to

associate different objects with the same person or place.
To ask how those memories were represented, we lever-
aged high-resolution fMRI and representational similarity
analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008) to
compare neural activation patterns for objects that were
related through a common person or place versus an unre-
lated baseline. We tested whether children form either dif-
ferentiated or integrated traces in the hippocampus and
mPFC, adjudicating alternate perspectives stemming from
the cognitive developmental literature (Keresztes et al.,
2018; Bauer & Varga, 2017). We further tested whether
these hippocampal and mPFC organizational schemes
were related to neocortical reinstatement by using amulti-
voxel pattern analysis (MVPA; Norman, Polyn, Detre, &
Haxby, 2006) and RSA to measure reactivation of the asso-
ciated person/place. Our goal was to test whether differen-
tiation in children’s hippocampus tracks reinstatement on
a trial-by-trial basis and whether the same is true in adults
for integration in mPFC. To this end, we focused on mid-
dle childhood (7–10 years old), as by this age children can

retrieve associative features (Riggins, 2014) and overlap-
ping (Bauer & San Souci, 2010) events. Although such
behavioral evidence suggests that the developing brain
can support successful memory retrieval, here, we ask a
more detailed question, namely, whether even similar
memory behaviors in children and adults might be under-
pinned by either different hippocampal or mPFC memory
representations, and/or different capacities for high-
fidelity neocortical reinstatement.

METHODS

Participants

The current report focuses on MRI data collected from 52
individuals recruited from the greater Austin, TX, area: 25
adults aged 19–30 years (M=22.32 years, SD=3.29 years;
14 self-reported as female and 11 as male participants) and
27 children aged 7–10 years (M = 9.10 years, SD = 1.09
years; 15 female and 12 male participants, based on paren-
tal report). Eighty volunteers (range = 7.16–30.09 years)
participated in the initial behavioral screening session.
During that session, participants (or their parents) com-
pleted a series of measures to confirm that participants
met screening criteria for the MRI study, which assessed:
(1) basic participant information (self- or parent-
reported), including right handedness, no color blindness,
and whether English was a native language; (2) general
intelligence in the normal range or higher (self-com-
pleted), as indexed by the vocabulary andmatrix reasoning
subtests of the Wechsler Abbreviated Scale of Intelligence,
Second Edition (Wechsler, 2011; inclusion threshold: <2
SDs below the mean); and (3) psychiatric symptoms below
the clinical range (self- or parental-reported), as indexed by
the Symptom Checklist-90–Revised (Derogatis, 1977) in
adults (inclusion threshold: standardized global severity
score ≤ 62) and the Child Behavior Checklist (Achenbach,
1991) in children (inclusion threshold: standardized global
severity score < = 63).

Of the 80 volunteers who participated in the initial
screening session, 17 were excluded before the MRI
scanning session due to voluntary withdrawal owing to dis-
comfort in the mock scanner (n= 2 children), scheduling
conflicts (n= 2 children and 1 adult), neuropsychological
assessments in the clinical range (n = 2 children and 4
adults), MRI contraindications (n = 2 children and 1
adult), left-handedness (n= 1 child), or failure to identify
the requisite number of familiar stimuli for the learning
task (n= 2 children). All participants met our IQ inclusion
threshold. Thus, 63 of the 80 participants who were
screened returned for the MRI session.

Of the 63 participants who participated in the MRI ses-
sion, 11 children were excluded due to: (1) low behavioral
performance (<90% final learning after five runs [n = 1]
or failing to perform significantly above chance [50%] on
the scanned recall task [n= 3]), (2) excessive motion dur-
ing the fMRI scans (n = 1; see MRI image processing
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below), or (3) incomplete data (n = 6). Incomplete data
were operationalized as failure to provide all three runs of
the scanned recall task or at least two (out of three) runs of
the category localizer task. Because a primary aim was to
measure representation of overlapping memories—
through comparing similarity of the three object cues that
shared the same retrieval target, each of which was pre-
sented in a different run of the recall task—loss of a single
recall run precluded full assessment of the similarity
among the related items from a corresponding set. More-
over, to ensure that the trainedMVPA classifier could accu-
rately detect when participants were viewing faces and
scenes in the localizer task (see below), at least two runs
were needed, one of which was used to train the classifier
and one of which was used to test the trained algorithm.
There were no issues with data loss for the item localizer
task, thus precluding any need for exclusion.

Our target sample size in each age group (n = 25) was
guided by prior, related research in adults (Mack &
Preston, 2016), which showed that this number was suffi-
cient to detect reliable item- and category-level reinstate-
ment in the hippocampus and neocortex, as well as
hippocampal–neocortical correspondences. Our com-
bined child and adult sample size also aligns well with past
developmental work employing multivariate representa-
tionalmethods similar to those used here (Callaghan et al.,
2021). An approximately equal number of children were
recruited of each age within the 7- to 10-year-old range,
and careful efforts were made to achieve approximately
equal numbers of male and female participants within
each age. The final sample consisted of native English
speakers who identified as 2% American Indian or Alaskan
(n= 1 child), 15% Asian (n= 2 children and 6 adults), 4%
Black or African American (n = 1 child and 1 adult), 73%
White (n=21 children and 17 adults), and 6%mixed racial
descent (n= 2 children and 1 adult). Twenty-one percent
of the sample was Hispanic (n= 6 children and 5 adults).
All participants and parents/guardians (hereafter referred
to as “parents”) provided verbal assent at the start of the
screening session as well as written informed consent at
the start of the MRI session. Participants received mone-
tary compensation at each session, at a rate of $10/hr for
the screening session and $25/hr for the MRI session.
There was also an opportunity to obtain up to a $10 bonus
during theMRI session, based on the number of runs com-
pleted. All procedures were approved by the University of
Texas at Austin Institutional Review Board.

Experimental Approach Overview

The overarching goal of the present research was to test
what representational scheme supports overlapping
memory retrieval within the developing brain. Therefore,
our priority for the experimental approach was to select
a task and design that, should children have access
to either differentiated or integrated neural codes, we
would be able to detect it. To that end, we adapted a

well-established developmental memory task (e.g.,
Fandakova et al., 2019; Sastre et al., 2016), whereby chil-
dren and adults were presented with novel face–object
and scene–object associative pairs and tested for memory
of the individual associations. Critically, each face and
scene stimulus was paired with three different objects
(e.g., face1–object1, face1–object2, and face1–object3),
forming sets of overlapping pairs. Thus, although objects
were never directly paired together, they were related
through a shared face or scene, thereby allowing us to
ask how related objects were organized relative to one
another (i.e., differentiated vs. integrated).
Because one goal was to measure differentiated and/or

integrated organization of related memories in the devel-
oping hippocampus, we chose to address this question
with a task that has previously demonstrated the role of
the hippocampus during overlapping memory retrieval
in children (Sastre et al., 2016) and that has also been used
to quantify hippocampal and mPFC organization in adults
(e.g., Molitor et al., 2021; Schlichting et al., 2015). A pri-
mary study that guided our task choice (Sastre et al.,
2016) used a similar method to ours, in which children
and adults learned multiple objects (16 in the prior work)
paired with the same scene. The study showed that hippo-
campal activation tracked successful overlapping memory
retrieval in children; however, only in high performers.
Thus, although we could have used other tasks to assess
our questions about neural organization of overlapping
events (e.g., Ngo et al., 2018; Bauer & San Souci, 2010),
we chose the current task because there was prior univar-
iate evidence to suggest that it was sensitive hippocampal
recruitment, our a priori ROI.
Importantly, the performance-related finding from

Sastre and colleagues (2016) further suggests that hippo-
campal recruitment—or hippocampal neural organiza-
tional representations, in our case—might only be
detected in instances when children successfully form
and retrieve memories for the overlapping events. This
finding thus informed our second design choice, which
aimed at producing high memory performance in chil-
dren. Specifically, in contrast to the prior work that used
16 overlapping objects with the same scene (Sastre et al.,
2016), here, we limited the number of objects to only
three per 12 overlapping faces/scenes (i.e., 12 overlapping
sets; 36 individual pairs). We know that overlapping learn-
ing is challenging for children (Schlichting et al., 2017) and
becomes increasingly difficult as the number of overlapping
items increases (i.e., 4 vs. 2; Bauer & Larkina, 2017). Thus,
by reducing the number of objects that shared an overlap-
ping element, we reasoned that both low- and high-
performing children should be able to learn and remember
the objects relative to one another, either through differen-
tiating them into disambiguated representations or inte-
grating them within the same representation. Indeed, to
foreshadow the results, we showed that 37 out of 38 chil-
dren learned the pairs, suggesting that the neural organi-
zational patterns reported in the present report are likely
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to reflect representational capacities available tomost chil-
dren at this age.
In addition to building onwell-established developmen-

tal tasks and implementing overlapping learning set sizes
that were intended to facilitate success, it was also neces-
sary to choose a task that can produce both differentiation
and integration neural coding schemes, particularly one
that has replicated this finding in the literature in the con-
text of small trial counts. Thus, our third reason for choos-
ing the present approach is that past adult work with this
task has shown that 12 overlapping items are sufficient to
detect integration and differentiation, in hippocampus as
well as in mPFC (Molitor et al., 2021; Schlichting et al.,
2015). On the basis of these neural organization findings
in adults, together with past evidence for hippocampal
involvement during successful overlapping memory
retrieval in children (Sastre et al., 2016), we reasoned that
this experimental approach was well-suited to detecting
the neural organizational scheme(s) that support overlap-
ping learning and memory retrieval in development.
Finally, although past work indicates that adults have

access to both differentiated and integrated organizational
schemes, given that our current design was geared toward
making the learning task developmentally feasible, we did
not necessarily expect adults to show differentiation or
integration in the hippocampus in this particular learning
situation. Prior work has shownmPFC integration in adults
under multiple learning conditions (Schlichting et al.,
2015), whereas the hippocampus in adults can show evi-
dence for either integration, differentiation, or both
(Molitor et al., 2021), which seems to depend upon the spe-
cifics of the learning situation (Schlichting et al., 2015).
Because our a priori hypothesis was that children would
not form integrated representations, particularly within
mPFC (Brod et al., 2017; Fandakova et al., 2017), we further
designed our learning task such that it would allow us to
observe mPFC integration in the mature brain. To this
end, here, the novel pairs were composed of familiar stimuli
for which participants had prior knowledge. Adults have
been shown to leverage existing knowledge to scaffold
integration of familiar information (Bein, Reggev, & Maril,
2020; van Kesteren, Rijpkema, Ruiter, Morris, & Fernández,
2014), something they are more likely to do than children
(Schlichting et al., 2022; Bauer et al., 2021), particularly
within mPFC (Brod et al., 2017). Therefore, by utilizing
familiar stimuli, we reasoned that our design would enable
us to show that, under the same set of learning conditions,
adults integrate whereas children may not.

Stimuli

Stimuli consisted of color images of six faces (three
female; three male), six scenes, and 36 objects. All stimuli
were sized to 400 × 400 pixels. Face and scene stimuli
were images of characters and places, respectively,
obtained from child-friendly films or television shows.
Objects were common, everyday items, not obtained from

films or television shows. Each face and scene was ran-
domly paired with three different objects, for 36 pairs
comprising 12 overlapping sets. This structure allowed
us to ask how individual objects that were associated with
the same face or scene were represented with respect to
one another, as well as how they could each give rise to rein-
statement of a neural pattern representing a particular face or
scene.

Because developmental differences in neural organiza-
tional schemes could result from differences in the ability
to retrieve the faces or scenes associated with the object
cues, we used familiar stimuli curated to each individual
participant. More specifically, only stimuli that participants
rated as highly familiar and could verbally label were
included in their stimulus set. Furthermore, as discussed
above, we hypothesized that adults, but not children,
would integrate overlapping stimulus pairs. As such, the
use of familiar stimuli also served to test whether adults
would leverage existing knowledge to scaffold integration
of the new pairs (Bein et al., 2020; van Kesteren et al.,
2014), something we did not expect children would do
(Bauer et al., 2021).

Procedure

The experiment consisted of two sessions: (1) an initial
behavioral screening session when participant interest in
and eligibility for the MRI scanning session were assessed
and (2) an MRI scanning session when all the main behav-
ioral and imaging data were acquired. The delay between
sessions ranged from 1 to 168 days (mean = 34.17, SD =
29.69; median = 27.0). Notably, the delay never exceeded
6 months, thus ensuring that standardized assessments
used to determine eligibility remained valid indicators of
neuropsychological and cognitive function over the course
of one’s participation. Moreover, task instructions were
reviewed at the start of the MRI session, removing any
memory burden and the need to control delay intervals.

Behavioral Screening (Session 1)

To gauge interest and comfort with the MRI protocol that
would be implemented at Session 2, participants (and
their parents, if minors) were guided through the proce-
dures to anticipate during the MRI session, including the
imaging and behavioral task protocols. Eligibility for the
MRI session was assessed through standardized and
experiment-specific tasks. The screening session had four
phases: mock scanner practice, standardized assessments,
stimulus familiarity rating task, and behavioral practice
tasks.

Mock scanner practice. Following informed assent and
consent regarding the screening procedures, participants
were exposed to the mock MRI scanner where they prac-
ticed lying supine in the bore for 2min while audio record-
ings of scanner noises were played aloud.
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Standardized assessments. Following the mock scan-
ner, participants and/or their parents completed a series
of general intelligence and neuropsychological measures
to confirm that participants met screening criteria for
the MRI (i.e., Wechsler Abbreviated Scale of Intelligence,
Second Edition and Child Behavior Checklist /Symptom
Checklist; see above).

Stimulus familiarity rating task. To encourage robust
recall (and integration, if adults) and to control for the
potential influence of familiarity on neural reinstatement,
a customized stimulus set was generated for each partici-
pant. Participants were shown a maximum of 326 images
(67 faces, 99 scenes, and 160 objects), presented randomly
one at a time on a computer screen. Participants were
instructed to indicate how familiar each image was, by
choosing one of three options: (1) not at all, (2) a little
bit, or (3) very. For images judged as “very” familiar, par-
ticipants were then asked to name or describe the image,
which allowed us to control for differences in verbally
expressible knowledge. Participants made their responses
aloud and had an unlimited amount of time to do so. Only
images that were judged as highly familiar and correctly
labeled were included in the stimulus set. This and all
other experimental tasks were designed and administered
using custom scripts in MATLAB R2017a (MathWorks),
which enabled automatic termination of the task when
the number of images needed for the primary learning
task was obtained. Thus, most participants did not provide
familiarity ratings for all 326 stimuli.

Although stimulus sets necessarily differed across par-
ticipants, several steps were taken to match the types of
stimulus content included across participants’ stimulus
sets. First, only three object images from a semantic cate-
gory (e.g., foods, athletic equipment, and musical instru-
ments) could be included in the same stimulus set. Second,
and similar to the object inclusion criteria, we ensured that
each of the faces and scenes were drawn from distinctive
categories. That is, only one face or scene image from a par-
ticular filmor television show could be included in the same
stimulus set. Together, these criteria served to ensure that
all stimulus sets spanned a variety of contexts and catego-
ries and had matching levels of interfering items.

Behavioral practice tasks. Finally, participants practiced
short versions of the four experimental tasks that would be
performed during the MRI session (see below), ensuring
that participants could perform the tasks before the MRI
scanning visit. Participants repeated each task until a perfor-
mance criterion of 90% was reached, which was typically
achieved on the first round. The practice task stimuli did
not overlap with those used in the main MRI experiment.

MRI Scanning (Session 2)

Participants/parents provided informed consent and were
then reminded of the task instructions and repeated the

same behavioral practice tasks as those completed at
Session 1. Following the practice tasks, participants
then completed the following four experimental
phases: pre-exposure item localizer (arrow detection
task; in the MRI), pair learning (initial learning/retrieval
task; outside of theMRI), memory recall (match/mismatch
decision task; in the MRI), and category localizer (repeat
detection task; in the MRI).

Pre-exposure item localizer (arrow detection task).
The fMRI data acquired during the pre-exposure phase
was used to estimate patterns of neural activity associated
with perception of the face and scene items that would later
be retrieved during the scanned memory recall task, thus
enabling quantification of the extent to which these item
patterns were reinstated. Participants were exposed to the
six face and scene images that comprised the to-be-learned
object–face and object–scene pairs, presented through a
rapid event-related design. Critically, the pre-exposure
phase occurred before pair learning, thus allowing for esti-
mation of the neural patterns associated with each item,
before forming an association with the object cues.
On each trial, a face or scene stimulus was presented for

1.5 sec with a black fixation dot superimposed on the cen-
ter of the image. After a random delay (250–750 msec)
from stimulus onset, the fixation dot changed to a left-
or right-facing arrow. The arrow was presented for the
remainder of the 1.5-sec stimulus presentation and for
an additional 1 sec after stimulus offset. Participants were
instructed to respond as quickly as possible to the arrow
direction by pressing one of two buttons on an MRI-
compatible button box. The concurrent arrow task was
intended to ensure attention to the stimuli. Following
the offset of the arrow, a black fixation dot was presented
alone for 2.0, 3.5, or 5.0 sec, with each intertrial interval
randomly jittered but occurring approximately equally
often for an average intertrial interval of 3.5 sec across
the total run. Each face and scene was presented three
times in a pseudorandom order, such that at least two
intervening images were presented in between repetitions
of the same face or scene image. The number and order of
left and right arrows was randomized. Participants com-
pleted three consecutive runs, each lasting 4.8 min,
amounting to a total pre-exposure localizer phase of about
15–20min when accounting for brief breaks and check-ins
in between each run.
Task performance was defined as the proportion of

arrows for which the arrow direction was correctly
detected, averaged across runs. Performance was high in
both children (M = 0.98, SD = 0.03; range = 0.89–1.00)
and adults (M= 0.99, SD= 0.01; range = 0.97–1.00), indi-
cating that participants of all ages attended to the images
during the pre-exposure item localizer scans.

Pair learning (initial learning/retrieval task). Before
the scanned memory recall task, participants completed
the pair learning task (Figure 1A) outside of the MRI
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scanner, which was intended to encourage the formation
of strongmemories, as evidenced by successful retrieval of
the target faces and scenes associated with each object on
a three-alternative, forced-choice memory test. Partici-
pants performed several consecutive learning-retrieval
blocks to a 90% criterion. On each trial of the learning
block, a face–object or scene–object pair was presented
for 3.0 sec followed by a 0.5-sec fixation cross (Figure 1A).

The face and scene images appeared on the left side of the
screen whereas the object images appeared on the right
side of the screen. Each of the 36 pairs was shown once
within the learning block, in a random order. Participants
were instructed to view the pairs and to create a story relat-
ing the two images together.

Following the learning portion, participants were tested
on their memory for the 36 pairs. On each trial, an object

Figure 1. Procedure schematics and corresponding performance on the behavioral tasks. (A) Initial learning/retrieval task. On each run, participants
studied the same 36 person–object and place–object pairs and then completed a self-paced, three-alternative, forced-choice memory test with
corrective feedback. (B) Scanned recall task. High-resolution fMRI activity was measured while participants viewed previously learned objects and
retrieved the target associates (person or place). Associative memory recall was considered successful based on performance on a subsequent
mnemonic decision task, in which participants made a button-press response to indicate whether a same-category memory probe (person or place)
matched or mismatched the item retrieved. We measured the degree to which neural representations differentiated or integrated overlapping
memories during the object cue period, as well as the specificity and degree of ensuing neocortical reinstatement of the associated elements during
the delay period. (C) Initial learning/retrieval accuracy. The proportion of correctly selected forced-choice associates was averaged across trials,
separately by age group. Dots reflect individual participant means. The lines connecting dots across runs depict within-participant learning
trajectories. The number of participants varied by run, depending on how many learning/retrieval repetitions were required to reach the 90% learning
criterion (depicted by the dashed black line): Runs 1 and 2: n= 52 (27 children; 25 adults); Run 3: n = 5 children; Run 4: n = 2 children, Run 5: n =
1 child. (D) Scanned recall accuracy. The proportion of correct match/mismatch decisions was averaged across runs and participants, separately for
each age group. Dots reflect individual participant means. The dashed black line reflects chance-level performance (0.50). Asterisks above each bar
reflect significant above-chance performance at the individual group level whereas asterisks between bars indicate a significant group difference at a
threshold of p < .001 (**). For C and D, box plots depict the median (middle line), 25th and 75th percentiles (the box), and the largest individual
participant means no greater than the 5th and 95th percentiles (the whiskers). Individual participant means that extend beyond the whiskers are
considered outliers, defined as values that were 1.5 times greater than the interquartile range (IQR).
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cue appeared above three face or scene options, one of
which was the correct associate (Figure 1A). Participants
were instructed to choose the face or scene image that
was originally paired with the object by pressing one of
three buttons on the computer keyboard (self-paced).
Distracter options were pseudorandomly assigned, with
the constraint that foils were always other items from the
learning set drawn from the same visual category as the
target item. That is, if the target answer was a face, both
distracters were also faces. This design criteria served to
ensure that participants were able to retrieve the specific
association, rather than the gist of the category. Following
each choice, regardless of accuracy, a feedback screen
appeared for 1.25 sec, which featured the object together
with the correct face/scene. The feedback screen and sub-
sequent test trial were separatedby a 0.5-sec fixation screen.
The pairs were tested in a random order, and the correct
answers were randomly distributed across the first, second,
and third position options. Participants performed at least
two runs of learning-retrieval blocks, with different random-
ized trial orders across each of the runs. If the test accuracy
was greater than or equal to 90% on the second run, partic-
ipants continued on to the scanned memory recall task.
Otherwise, participants repeated the learning-retrieval
blocks until the 90% criterion was reached (maximum rep-
etitions = 5). Notably, only one child was excluded due to
failure to reach the accuracy criterion after five learning-
retrieval repetitions.

Memory recall (match/mismatch decision task). The
fMRI data acquired during thememory recall task was used
to test the primary questions regarding how related mem-
ories are organized in different age groups, as well as the
degree to which reinstatement of associated memory ele-
ments is evidenced in hippocampus and neocortex. On
each trial of the recall task, the object cue was presented
for 1.5 sec followed by a 9-sec delay interval in which only a
fixation dot appeared on the screen (Figure 1B). Present-
ing the objects in isolation enabled us to use this initial cue
period of the trial to assess how memories for the related
pairs were organized.

During the delay period, participants were instructed to
hold the associated face or scene in memory in prepara-
tion for an upcoming memory decision. Because the delay
period was separated from the object cue and only con-
sisted of a fixation dot, this phase of the trial enabled us
to measure reinstatement of the associated face or scene.
We implemented a 9-sec delay here to ensure that children
had sufficient time to reinstate a high-fidelity memory
trace. Past developmental electrophysiological work has
shown age-related differences in the time course of neural
processing during associative memory retrieval (e.g.,
Rollins & Riggins, 2018; Bauer, Stafford Stevens, Jackson,
& San Souci, 2012). Moreover, children are less likely to
show electrophysiological signatures of memory retrieval
in the same recording windows as those observed in
adults, but do show similar signatures later in recording

windows (Hajcak & Dennis, 2009). As such, here, we
opted for a relatively long delay, so that even if children
were slower to reinstatememories compared with adults,
we would still be able to capture it.
To ensure that participants successfully retrieved the

associative memories in the MRI scanner, the recall task
further included a delayed match-to-memory decision
(Figure 1B). That is, following the delay, a memory probe
was presented that was either the correct target associate
(i.e., had been paired with the object previously; a match
trial) or an incorrect associate (i.e., had been paired with a
different object previously; amismatch trial). Thememory
probe appeared for 3.0 sec. Participants were instructed to
judge the probe as a match or a mismatch by pressing one
of two buttons on the MRI-compatible button box. As was
the case during initial learning/retrieval, mismatch probes
were always drawn from the same visual category as the
target associate, necessitating retrieval of the specific
target item rather than gist category information.
Finally, to maximize the efficiency of the slow event-
related design and the ensuing neural pattern estimates,
null fixation events with durations of 4.5, 6.0, and 7.5 sec
were randomly sampled from a uniform distribution
and intermixed between each recall trial.
Notably, during piloting, we observed that children

often confused the start and end of each trial. That is, with-
out explicitly prompting for a decision during the probe
presentation, children sometimes confused the memory
cues (i.e., objects) and probes (i.e., faces/scenes), leading
to match/mismatch responses to the object cues rather
than the face/scene probes. We took careful steps to elim-
inate this confusion, as proper identification of the cue
periods was necessary to ensure that participants retrieved
the targetmemories. First, the fixation cross that preceded
the object cuewas presented in green,whichwas described
as a signal that a new trial—and object memory cue—was
about to “start.” Second, 1 sec before the probe presen-
tation elapsed, a red fixation dot was superimposed on
the center of the face/scene probe image, signaling that the
trial was about to “stop.” Participants were instructed to log
a response on the button box when they saw the red dot,
if they had not done so already for that memory probe.
Participants completed three runs of the scanned recall

task, consisting of 12 trials each. Across the 12 trials within
a run, each of the six faces and scenes was a retrieval target
once. Moreover, each of the three related objects that
shared the same face or scene associate was tested in a dif-
ferent run. Thus, taken together, across the three runs,
each of the 36 unique object–face/scene pairs was tested
once. Trial order within a run was pseudorandomized,
such that trials from the same stimulus category and con-
dition (e.g., face mismatch trials) never appeared back-to-
back. In addition, target pairs were pseudorandomly
assigned to the match/mismatch condition, with the con-
straints that (1) within a run, there were three trials of each
of the four stimulus category/condition combinations
(e.g., face mismatch) and, (2) across runs, the same
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retrieval target (e.g., Pinocchio) was assigned to each
match/mismatch condition approximately equally often.
Each run lasted 4.10 min for a total scannedmemory recall
phase of about 15 min when accounting for brief breaks
and check-ins in between runs.
Task performance was defined as the proportion of

match/mismatches that were accurately detected across
all runs. Above-chance performance was determined for
each individual participant using a binomial test of signif-
icance (i.e., minimum number = 25/36 trials correct). All
participants included in imaging analyses performed sig-
nificantly above chance on thismemory recall task, indicat-
ing that participants retrieved the associated memories
during fMRI scanning (see Participants section above for
details on performance-related exclusions). Missing
responses during this match/mismatch decision task were
rare, yet still occurred (M= 0.75 trials across participants,
SD= 1.63). To equate the number of trials between anal-
yses that focused on the relationship between neural
reinstatement and performance on the match/mismatch
decision task, both in terms of (1) accuracy and (2) RT, we
opted to exclude missing responses. That is, although
missing trials could have been counted as inaccurate
responses, because there is no corresponding RT for such
trials, including trials without a response would have led to
differences in the trial counts between the two analysis
types. Thus, for consistency, all reports of match/mismatch
accuracy excluded trials for which there was no response
(including group means). Importantly, the exclusion of
nonresponse trials did not impact the overall pattern of
results nor participant exclusions.

Category localizer (repeat detection task). At the end
of the session, participants performed a blocked, 1-back
repeat detection task that included faces, scenes, objects,
and scrambled objects. The fMRI data acquired during this
task were used to identify functional reinstatement ROIs
that were sensitive to face and scene processing (see
below the ROI Definitions section) and to train our MVPA
classifier to decode viewing of different stimulus types,
thereby enabling estimation of category-level reinstate-
ment during scanned memory recall. Stimuli were drawn
from the same set as those used in the stimulus familiarity
rating task (see above) but did not overlap with the images
selected for the main learning and memory tasks.
Within each run of the repeat detection task, partici-

pants viewed 96 images, 24 from each stimulus category.
On each trial, a stimulus was presented for 1.5 sec followed
by a 0.5-sec black fixation dot. Participants were instructed
to indicate when a stimulus was identical to (i.e., a repeat
of ) the immediately preceding image. Stimuli were
blocked by category, with six items (including one repeat
trial) presented per block, lasting 12 sec. There were four
blocks of each stimulus type per run. Stimulus blocks
appeared in a pseudorandom order, with the constraint
that one of each of the four categories (face, scene, object,
and scrambled object) occurred before repeating a new

set of four category blocks. To ensure that the same stim-
ulus block never appeared consecutively between sets,
and to offer participants opportunities to rest periodically
within the run, baseline blocks—in which participants
viewed a black fixation dot for 12 sec—were inserted
between each set of four category blocks. Participants
completed up to three runs of the repeat detection task,
with unique stimuli presented in each run.

For some participants, individual localizer runs were not
completed due to time constraints. Specifically, 12% of
participants (n = 6 children) contributed only two of
the three possible localizer runs. Each run lasted approx-
imately 4.4 min for a total category localizer task of
9–14 min, depending on the number of runs completed.
Task performance was defined as the proportion of
repeats that were correctly detected, averaged across
runs. Performance was high in children (M = 0.94, SD =
0.07; range = 0.69–1.00) and adults (M= 0.98, SD= 0.03;
range = 0.90–1.00), mirroring previous work (Schlichting
et al., 2022).

MR Image Acquisition

Whole-brain imaging data were acquired on a 3.0 T
Siemens Skyra system. A high-resolution T1-weighted
magnetization prepared rapid gradient echo structural vol-
ume (repetition time [TR] = 1.9 sec, echo time [TE] =
2.43 msec, flip angle = 9°, field of view = 256 mm, matrix =
256 × 256, voxel dimensions = 1 mm isotropic) was ac-
quired for co-registration and parcellation. Functional
data were acquired using a T2*-weighted multiband
accelerated EPI pulse sequence, oriented approximately
20° off the Anterior Commissure-Posterior Commissure
axis (TR = 1.5 sec, TE = 30 msec, flip angle = 71°, field
of view = 220 mm, matrix = 110 × 110, slice thickness =
2-mm isotropic voxels, multiband acceleration factor = 3,
GRAPPA factor = 2). At least three fieldmaps were
acquired (TR = 647 msec, TE = 5.00/7.46 msec, flip angle =
5°, matrix = 64 × 64, voxel dimensions = 1.7 × 1.7 ×
2.0 mm) to correct for magnetic field distortions, which
were collected before the first run of each fMRI task (i.e.,
pre-exposure item localizer, memory recall, and category
localizer) as well as any time the participant exited the
scanner for a break in between functional runs within a
single fMRI task.

MR Image Preprocessing

Data were preprocessed and analyzed using FSL (FMRIB’s
Software Library) 5.0.9 (https://www.fmrib.ox.ac.uk/fsl)
and Advanced Normalization Tools ([ANTs] 2.1.0; Avants
et al., 2011) using a custom preprocessing pipeline (as in
Morton, Zippi, Noh, & Preston, 2021). The T1 structural
scan for each participant was corrected for bias field using
N4BiasFieldCorrection. Freesurfer 6.0.0 was used to auto-
matically segment cortical and subcortical areas based on
the processed structural image (Desikan et al., 2006).
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Functional scans were corrected for motion through
alignment to the center volume using MCFLIRT, with
spline interpolation. These realignment parameters were
used to compute framewise displacement (FD) and
DVARS for each volume. Individual volumes with both
an FD and DVARS exceeding a threshold of 0.5 mm were
identified. In addition to identifying these high-motion,
“bad” volumes, we also marked the volumes immediately
before and two volumes immediately after each bad vol-
ume. If more than 1/3 of the volumes were identified as
bad, the scan was excluded from further analyses. As out-
lined above (see Participants section), one child partici-
pant was excluded from analyses because more than 1/3
of the timepoints from a single run of the memory recall
task exceeded our FD and DVARS threshold. All other par-
ticipants contributed all three runs of the pre-exposure
and memory recall tasks and at least two runs of the cate-
gory localizer task.

Functional scans were unwarped using an adapted ver-
sion of epi_reg from FSL, which uses boundary-based reg-
istration (Greve & Fischl, 2009). This initial boundary-based
registration was then followed by ANTs, which applied
intensity-based registration to refine any misalignments
between functional scans and the T1 structural image.
Nonbrain tissue was removed from the unwarped functional
scans by projecting a brain mask derived from Freesurfer
into each participant’s native functional space. Average
brain-extracted unwarped functional scans were regis-
tered to a single reference scan collected in the middle
of the scanning session (i.e., the second memory recall
run) using ANTs. After calculating all transformations,
motion correction, unwarping, and registration to the ref-
erence functional scan were conducted using B-spline
interpolation, in two steps—a nonlinear step followed by
a linear step—to minimize interpolation. The bias field for
the average image was estimated for each scan using N4
bias correction implemented in ANTs and removed by
dividing the timeseries by a single estimated bias field
image. Functional time series were high-pass filtered
(126 sec FWHM) and smoothed at 4 mm using FSL’s
SUSAN tool. As a result of this registration process, all func-
tional and structural data were coregistered in each partic-
ipant’s native functional space, defined as the participant’s
middle functional run. All within-subject analyses were
conducted in this native space, whereas group-level anal-
yses were conducted in template Montreal Neurological
Institute (MNI) space.

ROI Definitions

Memory reinstatement was examined in two a priori ana-
tomical ROIs that have been reliably linked to face and
scene reinstatement in past research with adults, including
VTC (Trelle et al., 2020; Gordon, Rissman, Kiani, & Wagner,
2014), and parietal cortex (Lee & Kuhl, 2016). Neural orga-
nization analyses were conducted in a priori anatomical
hippocampus, which has been linked to related memory

retrieval in past research with children (Sastre et al., 2016)
as well as through whole-brain searchlight analyses, which
also allowed for test of neural schemes in mPFC. Prior
adult findings have revealed different representational
schemes in different subregions of mPFC (Schlichting
et al., 2015). However, mPFCmemory function in children
has been interrogated in only a few studies at most
(Calabro et al., 2020; Brod et al., 2017; Fandakova et al.,
2017). Given the lack of clear theories about mPFC subre-
gion development, we thus chose to use whole-brain gray
matter searchlights to interrogate where the largest devel-
opmental differences in mPFC organization were
apparent.

Neocortical ROIs (for Item and Category
Reinstatement Analyses)

Neocortical anatomical ROIs were bilateral and defined in
participants’ native functional space based on the auto-
mated Freesurfer parcellation. For the parietal mask, the
angular gyrus, supramarginal gyrus, superior parietal
lobule (SPL), and intraparietal sulcus (IPS) were summed
(Lee & Kuhl, 2016). For the VTC mask, inferior temporal
cortex, fusiform gyrus, and parahippocampal gyrus were
summed (Trelle et al., 2020). We then further restricted
the analysis of neocortical reinstatement to a set of
voxels that were most activated during face and scene per-
ception during the separate category localizer task (as in
Fandakova et al., 2019), thus ensuring that developmental
differences in the spatial extent, spatial location, and/or
degree of category-selective cortical activation could not
account for any developmental differences observed in
reinstatement of item or category neural patterns within
these regions (Meissner, Nordt, & Weigelt, 2019; Golarai,
Liberman, & Grill-Spector, 2017; Scherf, Behrmann,
Humphreys, & Luna, 2007).
To define the functional reinstatement ROIs for each

participant and neocortical region, for each run of the cat-
egory localizer, data were modeled using a general linear
model (GLM) implemented in FEAT Version 6.00. Stimu-
lus categories (face, scene, object, scrambled object, and
fixation) were modeled as five individual regressors. For
each category, the four 12.0-sec blocks were combined
into a single regressor and convolved with the canonical
double-gamma hemodynamic response function (HRF).
For all task regressors, temporal derivatives were included
and temporal filtering was applied. Motion parameters cal-
culated through MCFLIRT and their temporal derivatives
were added as additional confound regressors. We sepa-
rately estimated the contrasts of face above implicit base-
line and scene above implicit baseline, which yielded two
whole-brain statistical images quantifying voxelwise activa-
tion (one for faces and one for scenes), separately for each
run and participant.
The resulting statistical images were averaged across

localizer runs for each participant using fixed effects
(higher-level analysis in FEAT). This yielded two final z-stat
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images per participant, with the statistical images reflect-
ing how much each voxel was activated by face and scene
processing, across all runs. Because functional data were
already co-registered across runs, no additional registra-
tion step was necessary. Moreover, as the functional rein-
statement ROIs were used only for analyses conducted in
each participant’s native functional space, no averaging
across participants or spatial normalization to a group tem-
plate was necessary.
The resulting face and scene whole-brain maps were

then each masked with the VTC and parietal cortex ana-
tomical ROIs separately. Within each anatomically masked
statistical image, the face and scene ROIs were defined as
the 250 voxels showing the greatest amount of activation
(i.e., the highest voxelwise z-stats). We combined themost
active face and scene voxels within VTC and parietal cortex
separately, yielding two functional reinstatement ROIs for
each participant, each containing approximately 500 vox-
els. On the basis of prior work showing that face (Cohen
et al., 2019; Golarai et al., 2017) and scene (Fandakova
et al., 2019; Golarai, Liberman, Yoon, & Grill-Spector,
2010) representations are highly similar in children and
adults when distributed activation patterns are examined,
we did not assume spatial contiguity between voxels.
Occasionally, the same voxel was identified as among both
the most active face and scene voxels, resulting in fewer
than 500 voxels (VTC range: adult = 344–448 and child =
320–457; parietal range: adult = 304–431 and child =
288–410).
These more specialized functional VTC and parietal

masks that contained only the voxels that were most sen-
sitive to face and scene processing for each participant
were used to examine both category- and item-level rein-
statement, averaging reinstatement evidence across the
entire ROI. We also examined item reinstatement via
searchlight analyses conducted across the whole-brain
gray matter masks (see below), small-volume corrected
within each functional reinstatement ROI as well as within
anatomical hippocampus (see below the Hippocampal
ROIs section), revealing item reinstatement in more local-
ized voxels within these larger ROI masks.

Hippocampal ROIs (for Both Item Reinstatement and
Memory Organization Analyses)

The hippocampal mask was delineated manually on the
1-mm MNI152 template based on a cytoarchitectonic
atlas (Öngür, Ferry, & Price, 2003). The bilateral hippocam-
pal anatomical ROI was reverse normalized into each partic-
ipant’s native functional space using ANTs. In addition to
testing our a priori hypotheses regarding neural organiza-
tion in children, the anatomical hippocampal ROI was also
used in whole-brain searchlight analyses interrogating
both memory organization and item-level reinstatement,
small-volume corrected to identify localized voxels that
exhibited significant differentiation/integration, or signifi-
cant item-level reinstatement.

Whole-brain Gray Matter ROIs (for Both Item
Reinstatement and Memory Organization
Searchlight Analyses)

Whole-brain gray matter ROIs were defined in partici-
pants’ native functional space based on the automated
Freesurfer parcellation. Although searchlight analyses test-
ing for significant item reinstatement and memory organi-
zation were conducted within each participant’s individual
gray matter mask, for group-level statistical testing, group
masks were generated by adding individual participant
masks together, normalized to MNI group space using
nonlinear SyN transformations in ANTs.

Deriving Event-specific Activation Patterns (Inputs
to MVPA and RSA)

Three parallel sets of models were performed to derive
event-specific patterns as inputs to our neural reinstate-
ment and memory organization analyses: One model
focused on the pre-exposure item localizer task (i.e., item
perception), and two focused on the memory recall task
(one modeling patterns of activation for each object cue;
the other modeling the delay period). For all models,
separate event-specific univariate GLMs were conducted
for each run, using the least squares single method
(Mumford, Turner, Ashby, & Poldrack, 2012; Xue et al.,
2010). Within each run, the individual events were mod-
eled at the trial level across the whole-brain gray matter
mask. For the memory recall task, in which a single trial
comprised two separate phases of interest (i.e., the object
cue and the delay period), separate models were con-
ducted for each. For all models, confound regressors were
included to account for motion: six head motion parame-
ters, their temporal derivatives, FD, and DVARS (Power,
Barnes, Snyder, Schlaggar, & Petersen, 2012). We also
accounted for high-motion bad volumes identified during
preprocessing, by including additional motion regressors
for time points during which head motion exceeded both
the FD and DVARS thresholds. All models were conducted
on the spatially preprocessed fMRI data. Temporal filtering
was further applied to each event during modeling.

Modeling Item Perception (for Item
Reinstatement Analyses)

We wanted to quantify the degree of item-specific rein-
statement during the delay period of the memory recall
task. For this purpose, we estimated neural patterns asso-
ciated with the perception of each of the six faces and
scenes from the pre-exposure item localizer phase. Sepa-
rate least squares single GLMs were conducted for each of
the three scanned pre-exposure runs, with each of the six
faces and scenesmodeled as a single event. That is, each of
the three 1.5-sec stimulus presentations of an individual
face/scene stimulus from a runwere collapsed into a single
regressor and convolved with the canonical double
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gammaHRF. This approach resulted in one voxelwise beta
image for each of the six face and scene images for each
run and participant, which were used as inputs to the
RSA assessing reinstatement of these item-specific percep-
tual patterns during recall.

Modeling the Object Cue Period (for Memory
Organization Analyses)

We modeled the object cue period to interrogate the
degree of similarity among patterns of fMRI activation
evoked by related versus unrelated objects. To this end,
within the memory recall task, we extracted neural pat-
terns for each of the individual object cue presentations,
each modeled as a single 1.5-sec regressor and convolved
with the canonical double gamma HRF. Nuisance regres-
sors of no interest that accounted for later trial variance
were also modeled, including the delay period (by cate-
gory: face and scene targets) and probe (category × probe
type: face match, face mismatch, scene match, scene mis-
match). The resulting beta images consisted of voxelwise
parameter estimates for each of the 36 object cue acti-
vation patterns (12 per run) for each participant. These
voxelwise estimates were used as inputs to the memory
organization RSA assessing the similarity of related object
cues relative to unrelated object cues.

Modeling the Delay Period (for Item and Category
Reinstatement Analyses)

Finally, we modeled the delay period to quantify the
degree of neocortical item- and category-level reinstate-
ment, conducting two separate models that either (1) col-
lapsed activation across the full 9-sec-delay period or (2)
split activation estimates into the first and second halves
(4.5 sec) of the delay period. We extracted neural patterns
for the delay period on each recall trial; each modeled as
either a single 9-sec regressor or as two 4.5-sec regressors
and convolved with the canonical double gamma HRF.
Additional regressors that accounted for the preceding
trial-wise object cue variance were also modeled, as were
regressors that accounted for variance during the probe
period (category × probe type; as in the object cue model
above). The approach resulted in one voxelwise beta
image for each of the delay period patterns (36 for the 9-
secmodel; 72 for the split-half model) for each participant,
which were used as inputs to the MVPA and RSA
approaches interrogating category- and item-level rein-
statement, respectively.

Notably, in the object cue model above, the events of
no-interest (i.e., the delay period) were modeled at the
category level (i.e., face and scene targets); whereas, in
the delay model here, the events of no-interest (i.e., the
object cues) were modeled at the trial level. Our rationale
for this difference is that, in the object cue model, the
phase of no-interest (i.e., the delay) occurred after the
phase of interest (i.e., the object cue) and, thus, could

not be expected to influence the trial-wise estimates of
the object cues. Conversely, in the delay model here, the
phase of no-interest (i.e., the object cue) occurred before
the phase of interest (i.e., delay period) and could there-
fore carry over into trial-level delay period activation esti-
mates. We thus modeled object cue variance at the trial
level to mitigate the influence of any carryover effects.

Category-level Reinstatement Analyses
(Using MVPA)

The goal of the MVPA classification analysis was to quantify
the degree to which category-level information (face vs.
scene evidence) was reinstated during the delay period
of the memory recall task. Pattern classification analyses
were conducted on detrended and z-scored category loca-
lizer and recall data at the within-participant level, in each
participant’s native functional space separately within
each participant’s functionally defined VTC and parietal
ROIs (see above) using PyMVPA (Hanke et al., 2009) and
custom Python scripts.

Training the Pattern Classifier during
Category Perception

We first ensured that the MVPA classifier could accurately
detect when participants were viewing faces and scenes.
To this end, a sparse multinomial logistic regression clas-
sifier (lambda = 0.1, the default) was trained to discrimi-
nate neural activation patterns associated with viewing
faces and scenes in the category localizer task. The classi-
fication training was conducted on the preprocessed, spa-
tially smoothed functional timeseries data. Each of the
individual measurement volumes corresponding to a face
or scene block (eight volumes per block) was labeled
according to the visually presented category. The fMRI
data were shifted by 4.5 sec to account for the hemody-
namic lag, and these volume labels were used as inputs
to the classifier algorithm for training.
Classification performance was evaluated with a

leave-one-run-out cross-validation approach, such that
unlabeled fMRI patterns from an individual run (i.e., one
“fold,” which was “left out” of the classifier training) were
labeled as a face or scene, according to the trained classi-
fier from the other runs for that participant. That is, for
each unlabeled activation pattern corresponding to an
individual volume, the classifier labeled it as either a face
or scene—a prediction that was based on the correspon-
dence between the unknown activation pattern and the
classifier’s trained algorithm from the other runs. This val-
idation approach was repeated for each run separately,
resulting in two or three cross-validation folds, depending
on the total number of runs available. Classifier perfor-
mance was assessed by averaging the accuracy across the
predictions for all cross-validation folds, yielding a single
cross-validation accuracy score for each participant and
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ROI, which was compared with chance (50% for two
categories).

Applying the Trained Classifier to the Delay Period
Recall Data

After validating that the classifier could accurately decode
patterns of face and scene activation, we then applied the
classifier to the memory recall task to quantify the degree
to which face and scene patterns were reinstated in mem-
ory during the delay period. The same classifier as above
was used here, except rather than the leave-one-run-out
training approach, here, the classifier was trained on all
runs of the localizer task for each ROI. To predict the
degree of face and scene evidence during the delay period
of each scanned recall trial, the trained classifier was
applied to the trial-level delay patterns modeled through
the GLM approach (see above). Specifically, for each
9-sec or 4.5-sec retrieval pattern (corresponding to the full
or split-half delay model, respectively), the pattern-
classification algorithm estimated the amount of face
and scene activation evidenced out of a probability of 1,
yielding two continuous probabilities ranging from 0 (no
evidence) to 1 (perfect evidence) for each trial. Chance-
level evidence for a target category corresponded to a
raw value of 0.5, reflecting equivalent evidence for both
categories. To correct for non-normality, the classifier out-
put was transformed to logits (log odds = log[x/(1 − x)];
as in Trelle et al., 2020; Richter, Chanales, & Kuhl, 2016). A
logit value of 0 corresponded to a raw, chance-level rein-
statement value of 0.5. Larger positive logit values indi-
cated greater evidence for the target category; whereas,
negative logit values indicated greater evidence for the
nontarget category.

Analysis of Group-level and Trial-level
Category Reinstatement

Reinstatement of the target category was evaluated within
and between groups by comparing across-trial mean target
reinstatement probability values against chance levels (i.e.,
0; one-sample t tests; one-tailed) and between groups
(independent-sample t test; two-tailed). Importantly, we
were interested inwhat successful category-level reinstate-
ment looks like and whether such reinstatement differs
between age groups. As such, here, analyses were
restricted to trials in which performance was successful
at both unscanned final learning and scanned memory
recall (see below the Performance-related Trial Restric-
tions section). In addition to group-level analyses, trial-
wise estimates for the target category (i.e., face evidence
when the retrieval target was a face) were also entered into
within-participant mixed effects and drift diffusion models
(DDMs), enabling test of the association between rein-
statement and decision accuracy and speed, respectively
(see below Trial-level Mixed Effects Models and Trial-level
DDMs sections, respectively).

Item-level Reinstatement Analyses (Using RSA)

To characterize the degree to which item-specific informa-
tion was reinstated during the delay period of the memory
recall task, RSA (Kriegeskorte et al., 2008) was used to
compute how much more similar delay period retrieval
patterns were to perception of the same item (same-item)
versus to other items from the same category (different-
item). The RSA was implemented in PyMVPA (Hanke et al.,
2009) within functionally defined VTC and parietal cortex
(see above) in each participant’s native functional space, as
well as across the whole-brain gray matter mask, small-
volume corrected within both anatomical hippocampus
and functionally defined VTC and parietal cortex (see below
the Whole-brain Item Reinstatement with Searchlights sec-
tion). Within each functional reinstatement ROI or search-
light sphere, we computed the similarity between the face
and scene perception patterns derived from the pre-
exposure item localizer and the retrieval patterns derived
from the delay period of the memory recall task, via pair-
wise Pearson’s correlation coefficients. Differences in pat-
tern similarity between same-item similarity values (e.g., r
of delayface1 & perceptionface1) and different-item similarity
values from the same category (e.g., r of delayface1 &
perceptionface2) were computed by transforming Pearson’s
correlation values to Fisher’s z scores and averaging the
similarity values corresponding to the same- and different-
item conditions, using customMATLAB and Python scripts.
Because similarity values were always computed between
pre-exposure and recall neural patterns, which necessarily
occurred across runs, temporal autocorrelation was not a
concern (Mumford et al., 2012).

Analysis of Group-level and Trial-level
Item Reinstatement

Amean item reinstatement index was derived for each par-
ticipant and each functional reinstatement ROI by sub-
tracting the different-item similarity values (always
restricted to the same category) from the same-item sim-
ilarity values, restricted to correct scanned recall and final
pair learning trials (see below the Performance-related
Trial Restrictions section). These participant-level esti-
mates were averaged across participants within each age
group and compared with chance levels (i.e., 0; one-
sample t tests; one-tailed), yielding an estimate of whether
item reinstatement was reliably evidenced on successful
trials in each neocortical functional ROI (fROI). To exam-
ine age-related differences, the group-level item reinstate-
ment indices were compared between children and adults
(independent-samples t test; two-tailed), separately for
each VTC and parietal fROI.

In addition to group-level pattern similarity estimates,
which collapsed across all correct trials and across partici-
pants within a group, trial-level item reinstatement esti-
mates were computed at the within-person level, in each
neocortical fROI separately. Here, we examined whether
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trial-by-trial variability in delay period item reinstatement
corresponded with (1) neural organization of the preced-
ing object cue (see below the Memory Organization Anal-
yses section) and (2) match/mismatch behavior during the
subsequent memory probe (see below the Trial-level
Mixed Effects Models and Trial-level DDMs sections; not
restricted to correct trials). For each recall trial, a raw
“same-item” reinstatementmeasurewas computed, which
compared the similarity between that delay pattern and
the same-item perceptual patterns from the pre-exposure
phase. Notably, unlike the group-level analyses in which
we tested whether same-item reinstatement was reliably
observed compared with a “different-item” baseline, here,
we focus on raw same-item neural estimates rather than
baseline-subtracted estimates. The latter would have
necessitated the use of a different baseline for each
individual recall trial. Because varying baselines could
differentially influence—and overwhelm—pattern similarity
estimates for a singular same-item trial estimate, for all
trial-level analyses and results (including those onmemory
organization; see below), we report raw values without ref-
erence to a baseline.

Whole-brain Item Reinstatement with Searchlights

A searchlight extension of the main item reinstatement
analysis in functionally defined VTC and parietal cortex
was conducted to identify localized voxels that exhibited
significant item-level reinstatement, at the whole-brain
level, which was then small-volume corrected within the
fROIs as well as within hippocampus. Here, the same gen-
eral RSA was repeated, wherein similarity matrices were
generated by calculating the pairwise Pearson’s correla-
tion values between the delay patterns and pre-exposure
patterns of viewing that same item versus different items,
restricted to correct trials and transformed to Fisher’s z.
Yet rather than calculating one single similarity index for
an entire ROI, here, the similarity contrasts were com-
puted at the level of individual searchlight spheres (radius =
3voxels). A randompermutation approachwas thenused to
evaluate the statistical significance of the observed index
within each searchlight sphere, whereby the actual
observed contrast—same minus different item—was com-
pared with a null distribution of indices calculated from ran-
domly permuting the values that contributed to the
observed contrast (see below the Statistical Analysis of
Searchlight Evidence section). To parallel the primary anal-
yses that tested if children and adults show reliable item
reinstatement at the group level in VTC or parietal cortex,
we tested for significant item reinstatement regions within
the child and adult groups separately (see below the Statis-
tical Analysis of Searchlight Evidence section).

Memory Organization Analyses (Using RSA)

To characterize how object cues that shared an overlap-
ping face/scene associate were organized relative to one

another, an RSA approach was again implemented in
PyMVPA (Hanke et al., 2009). The RSA was conducted in
each participant’s native functional space, both within ana-
tomically defined bilateral hippocampus as well as across
the whole brain, which further allowed us to interrogate
mPFC (see below the Whole-brain Memory Organization
with Searchlights section). Specifically, within the hippo-
campal ROI and each whole-brain searchlight sphere, we
computed the similarity between the different object neu-
ral retrieval patterns derived from the object cue period of
the memory recall task via pairwise Pearson’s correlation
coefficients. Differences in pattern similarity between
object cues that shared the same retrieval target (i.e.,
related objects) and objects that shared different retrieval
targets from the same category (i.e., unrelated objects)
were computed, by transforming Pearson’s correlation
values to Fisher’s z and averaging the similarity values cor-
responding to each relatedness condition via custom
MATLAB and Python scripts. Only across-run similarity
values were included tomitigate the influence of temporal
autocorrelation on pattern similarity estimates (Mumford
et al., 2012).

Analysis of Group-level and Trial-level Memory
Organization Effects

The participant-level related object and unrelated object
mean pattern similarity estimates were entered into group
analyses, by averaging across participants within an age
group. To assess the effect of age group and condition
(related vs. unrelated) on neural pattern similarity within
our a priori hippocampal ROI, a 2 (child, adult) × 2
(related, unrelated) repeated-measures ANOVA was con-
ducted. Significant interactions and main effects were
interrogated through separate repeated-measures
ANOVAs and/or paired-samples t tests. Chance-level evi-
dence for neural organization corresponded to a nonsig-
nificant condition effect, reflecting that the similarity of
neural activation patterns did not differ for related versus
unrelated objects. Evidence for neural integration, on the
other hand, was indexed by higher pattern similarity for
related objects versus unrelated objects. Evidence for neu-
ral differentiation was indexed by the opposite pattern,
such that neural patterns for related objects was lower
than that of unrelated objects. The approach thus enabled
us to test whether neural integration and/or differentiation
was reliably observed within an age group and whether
these schemes differed by age group.
In addition to group-level pattern similarity analyses,

which collapsed across all correct trials and across partici-
pants in each age group, trial-level neural organization
similarity estimates were also computed for each individ-
ual participant. As above, for each object cue, the pattern
similarity between that object and the two other objects
that shared the same face/scene retrieval target was com-
puted and averaged. This trial-level raw “related” neural
estimate was then entered into mixed effects models
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interrogating the association between neural memory
organization and ensuing neocortical item- and category-
level reinstatement (see below the Trial-level Mixed Effects
Models section). As for trial-level item reinstatement
analyses (see above), here, we focused on raw “related”
neural estimates rather than on baseline-subtracted neu-
ral estimates.

Whole-brain Memory Organization with Searchlights

A searchlight extension of the neuralmemory organization
analysis conducted in a priori anatomical hippocampus
was conducted to identify localized voxels that exhibited
significant differentiation or integration of related object
cues, both at the whole-brain level—enabling assessment
of developmental differences across neocortex, including
within mPFC—and within hippocampus. Specifically, we
looked for (1) differentiation and (2) integration of related
object cues, operationalized as lower or higher pattern
similarity for related object cues relative to unrelated object
cues (from the same visual category), respectively. The
same general RSA as above was repeated here, wherein
similarity matrices were generated by calculating the pair-
wise Pearson’s correlation values between the related ver-
sus unrelated object cue patterns, restricted to correct trials
and transformed to Fisher’s z, calculated within each
searchlight sphere (radius = 3 voxels). A random permuta-
tion approach was used to evaluate the statistical signifi-
cance of observed neural organizational effects (see below
the Statistical Analysis of Searchlight Evidence section).
To evaluate the presence of age-invariant neural orga-

nizational effects, we tested for significant neural organi-
zation regions collapsed across children and adults. In
the integration searchlight, the observed and randomly
permuted indices were calculated by subtracting the
unrelated similarity values from the related similarity
values—in essence, searching for regions that showed
related > unrelated within each searchlight sphere. In
the differentiation searchlight, we performed the inverse
contrast, such that the observed and randomly permuted
indices were calculated by subtracting the related similar-
ity values from the unrelated similarity values—thereby
reflecting regions that showed unrelated> related within
each searchlight sphere.
To test for developmental differences in neural organi-

zation, we tested for regions that showed greater neural
integration or neural differentiation via two contrasts: (1)
adults > children or (2) children > adults. Importantly, an
interaction of integration or differentiation with age group
is ambiguous with respect to whether significant integra-
tion and/or differentiation exists within each age group
individually. For example, if some voxels show adults >
children for the integration contrast (related> unrelated),
this age effect could be attributed to adults exhibiting reli-
able integration (related> unrelated) while children show
either no significant organization (related = unrelated) or
differentiation (unrelated > related). Likewise, this effect

could also result from adults showing more evidence of
integration relative to children, despite no significant evi-
dence of integration (related > unrelated) in the adult
group overall. As such, for regions showing a significant
effect of age on neural organizational coding scheme, we
then separately tested for integration or differentiation
within each age group. We report age interactions only
when an effect was reliable within at least one group
(i.e., enhanced integration was driven by significant inte-
gration in one group and/or by significant differentiation
in the other group).

Statistical Methods and Significance Thresholding

Performance-related Trial Restrictions

Where possible, for all statistical analyses that evaluated
neural measures of item or category reinstatement or
memory organization (i.e., mean-level group analyses,
searchlights, and mixed effects models that focused on
the relationship between memory organization and rein-
statement), we limited analyses to “correct” trials to
reduce the possibility that age-related differences in over-
all performance contaminate our neural results. Specifi-
cally, for the aforementioned analyses, we measured
both overlapping neural memory organization and
item/category reinstatement considering only trials for
which the participant both (1) learned the pair initially,
which we defined as having remembered it correctly on
the final retrieval test from the pair learning phase, and
(2) correctly responded during the match/mismatch
decision of the scanned recall task. The logic is that if
participants did not learn the pair initially, or did not cor-
rectly identify the probe as a match or mismatch, there is a
higher likelihood they were reinstating the wrong mem-
ory (or nothing at all).

The performance-related restrictions were applied to all
statistical analyses with the exception of two in which we
used participant-level category and item reinstatement to
predict decision accuracy and speed on the match/
mismatch task. In the case of decision accuracy, because
we wanted to predict accuracy on the match/mismatch
task at the trial level, we needed to include both correct
and incorrect trials as outcomes to run our logistic regres-
sion. Thus, here, the mixed effects analysis was limited
according to neither performance on the final learning
task nor the actual scanned recall task (see below the
Trial-level Mixed Effects Models section). In the case of
response speed, there were no trial restrictions based on
behavioral accuracy, as the DDM (Ratcliff, 1978) approach
requires inclusion of both correct and incorrect trials (see
below the Trial-level DDMs section).

Mean-level Group Analyses

Group analyses comparing differences between age
groups and/or reliable effects within age groups were
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conducted via t tests and ANOVAs in SPSS (Version 27),
with Bonferroni-adjusted p values reported to control for
multiple comparisons. In cases where the assumption of
sphericity was violated in ANOVAs, the degrees of free-
dom were adjusted using Greenhouse–Geisser correc-
tions. Likewise, for independent-samples t tests, when
the Levene’s Test indicated unequal variances between
age groups, the degrees of freedom were adjusted
accordingly.

Notably, for category and item reinstatement (but not
other effects), we evaluated the statistical significance
within each group via a one-tailed t test. The rationale
for using one-tailed t tests here and not for other analyses
(e.g., memory organization) is that only for the reinstate-
ment analysis was our prediction strongly directional. That
is, we were only interested in effects wherein reinstate-
ment was significantly greater than (not merely different
from) zero, and therefore one-tailed tests are appropriate.
By contrast, for memory organization analyses, both direc-
tions of difference are interpretable (i.e., related < unre-
lated [less than 0] is taken as evidence of differentiation,
whereas related > unrelated [greater than 0] implies inte-
gration). Therefore, throughout the article, all other statis-
tical tests are two-tailed unless otherwise noted.

Trial-level Mixed Effects Models

Trial-wise analyses were conducted using mixed effects
models using the lme4 package (Bates, Mächler, Bolker,
& Walker, 2015) in RStudio (2020; Version 1.2.5042).
Two primary sets of models were performed: (1) one that
tested the relationship between item/category reinstate-
ment and match/mismatch behavior and (2) another that
tested the relationship between memory organization
(integration/differentiation) and item/category reinstate-
ment. For all models, we assessed model fits, first compar-
ing a base model (for which age group was not included as
a predictor) to a model that included a main effect of Age.
We then further compared that best-fit model (base vs.
main effect) to a model that included an interaction with
age group. Results from the best-fitting model are
reported in all cases, with the exception of interaction
models, for which we sometimes report interaction
models when there is (1) a marginally significant improve-
ment in model fit when including an interaction term,
suggesting modest evidence of a conditional effect or (2)
a significant interaction term in the model itself, suggesting
that this is a reliable effect. For all models, we modeled the
participant-specific association as a random slope. Individ-
ual model predictors were scaled and centered across all tri-
als within a participant before analyses, thus standardizing
the distribution between participants. For base and main
effectmodels, statistical significance of individual predictors
was assessed using a Wald chi-square test (Fox &Weisberg,
2011); whereas, for interaction models, separate slopes
were assessed for each group (i.e., simple_slopes function
from reghelper R package).

For the model testing whether trial-wise variability in
item and category reinstatement explained behavioral
performance on the match/mismatch memory task, we
conducted a single logistic mixed effect model (glmer
function) using a binomial linking function (family =
binomial) that included both item reinstatement (same-
item similarity) and category reinstatement (logit trans-
formed classifier evidence for target category) indices in
the VTC and parietal cortex functional reinstatement ROIs
during the delay interval. More specifically, we included all
four reinstatement measures—VTC item, VTC category,
parietal item, and parietal category—in a single model,
enabling assessment of which reinstatement predictors
(if any) explained unique variance in whether participants
answered the subsequent match/mismatch probe cor-
rectly. In addition to these central predictors, we also
included additional regressors that captured variability in
(1) univariate hippocampal activation during the cue
period as well as (2) univariate VTC and parietal activation
during the delay period, thus mitigating the likelihood
that any observed effects of target memory reinstatement
on performance are instead due to global changes in
BOLD activation. Moreover, as noted above, this analysis
did not control for behavioral performance, as this was
the dependent measure of interest.
For the models that tested whether hippocampal or

mPFC object cue memory organization was associated
with neocortical reinstatement, we applied the same
performance-related restrictions applied elsewhere (i.e.,
we restricted to correct final learning and scanned recall
trials). Here, we employed linear mixed effects models
(lmer function) to test the association between object
cue similarity—defined as raw “related” estimates (see
above)—separately for anatomical hippocampus and
mPFC (searchlight cluster; see the Results section) and
ensuing neocortical reinstatement during the delay
period. For the reinstatement-dependent measures, we
focused on only those ROIs that, in both age groups and
across the full delay, either showed (1) reliable reinstate-
ment or for which (2) trial-wise variability in reinstatement
was linked to behavior at significant or trend levels. This
resulted in three neocortical dependent measures: (1)
VTC category, (2) parietal category, and (3) parietal item
(see the Results section). There was thus six cue
organization/reinstatement models, three that looked at
the relationship between anatomical hippocampal cue
organization with each of the three reinstatement vari-
ables and three that looked at the same reinstatement var-
iables, but with mPFC cue organization as the predictor.
In addition to our a priori hippocampal and mPFC cue

organization ROIs, we conducted additional follow-up
analyses in which we ran the same models for other
searchlight regions that showed significant integration in
either children or adults. The approach allowed us to test
whether the effect of integrated neural organization on
neocortical reinstatement were selective to our a priori
ROIs, or rather observed elsewhere in other regions that
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showed evidence of this neural coding scheme (either in
adults or children). To mitigate the issue of multiple com-
parisons, here, we chose to restrict these follow-up com-
parisons to only those neocortical dependent variables
that showed a significant association with our a priori
hippocampal and mPFC memory organization variables.

Trial-level DDMs

Following previous work (Mack & Preston, 2016), we used
DDM (Ratcliff, 1978) to assess whether reinstatement
during the delay period predicted, for each individual
trial, response speed on the subsequent match decision.
In particular, we evaluated the association between drift
rate v—defined as the rate at which evidence for a
memory-based decision accumulates—and RT distribu-
tions on the mnemonic decision task. There were no trial
restrictions based on behavior applied for the purposes
of this analysis, as the DDM approach requires inclusion
of both correct and incorrect trials. However, we did
restrict our analysis to onlymatch trials to equate the dif-
ficulty of the decision/matching process, which would be
expected to vary across mismatch trials and therefore be
an additional source of noise.
Guided by the significant or trend-level associations

between VTC category and parietal item reinstatement
effects on decision accuracy (see the Results section), here
we constrained our analysis to these same neocortical
reinstatement measures, focusing on trial-by-trial evi-
dence of category VTC reinstatement (target reinstate-
ment) as well as item-level parietal cortex reinstatement
(raw same item estimates). We modeled the linear effect
between VTC category reinstatement and parietal item
reinstatement on the drift rate parameter. Within this
model, we additionally controlled for mean hippocampal
BOLD response on each trial, as this was a significant pre-
dictor in the mixed effects accuracy models (unlike BOLD
VTC and parietal responses; see the Results section). The
models—each containing three predictors (hippocampal
BOLD cue response, VTC category reinstatement, parietal
cortex item reinstatement)—were run separately for chil-
dren and adults, using the Hierarchical Drift Diffusion
Model toolbox (Version 0.5.3; Wiecki, Sofer, & Frank,
2013), which implements hierarchical Bayesian parameter
estimation using Markov-Chain Montel Carlo sampling
methods. Specifically, models were estimated with 5000
Markov-Chain Montel Carlo samples, after discarding the
first 1000 samples for burn-in and thinning of 2, resulting
in a distribution of 2000 regression coefficients.
To evaluate statistical significance among the neural

predictors and the drift rate parameter, we computed
the proportion of regression coefficients that were more
or less than 0 depending on the sign of the coefficient
median, constituting a p value for each neural measure.
Only predictors for which the corresponding p values
exceeded the 95th percentile (i.e., p < .05) were consid-
ered statistically significant. The models thus resulted in

three regression coefficients reflecting the relationship
between each of the neural measures (i.e., parietal item
reinstatement, VTC category reinstatement, cue-period
hippocampal BOLD activity) and drift rate for the match
decisions. In situations where reinstatement is high, this
should result in a faster accumulation of evidence (or drift
rate) and a faster RT. When item reinstatement is low, evi-
dence accumulates gradually and the RT is slower. There-
fore, positive coefficients would provide evidence that
greater reinstatement is associated with a higher drift rate
or faster evidence accumulation. Notably, all model fits
were assessed beforehand, including checks on model
convergence using the Gelman-Rubin R-hat statistic (see
Mack & Preston, 2016, for details) as well as ensuring that
the neural models provided a better fit (i.e., smaller devi-
ance information criterion value) than a baseDDM that did
not include effects of reinstatement or hippocampal cue
activation.

Statistical Analysis of Searchlight Evidence

Two searchlight extensions were conducted to identify
more localized voxels that exhibited (1) significant item-
level reinstatement and (2) significant differentiation
and/or integration of related object cues. All search-
lights were run across the whole-brain gray matter
masks within each participant’s native functional space.
Searchlight maps were then masked and statistically
evaluated within each ROI separately. Below, we detail
the general approach to identifying statistically significant
clusters of voxels.

A random permutation approach was used to evaluate
the statistical significance of the observed effect within
each searchlight sphere, whereby the actual observed
contrast—(1) item reinstatement: same minus different
item or (2) memory organization: related minus unrelated
object cues (for integration, or vice versa for differentia-
tion)—was compared with a null distribution of indices
calculated from randomly permuting the values that con-
tributed to the observed contrast. For example, with
respect to the item reinstatement searchlight, we ran-
domly shuffled assignment of the same-item and
different-item similarity values, resulting in a random item
reinstatement index. For each searchlight analysis, the
permutation process was conducted 1000 times within
each searchlight sphere, yielding a null distribution of con-
trast indices. A z score reflecting how much greater the
observed index was compared with the mean of the null
distribution was computed, resulting in a whole-brain
z-map for each searchlight analysis.

To evaluate whether these voxelwise z-stats showed sta-
tistically reliable neural coding signatures at the group
level, we applied a cluster-based random permutation
approach. To align individual voxels across participants,
we first normalized the participant z-maps to MNI group
space using nonlinear SyN transformations in ANTs. Using
Randomise in FSL (Winkler, Ridgway, Webster, Smith, &
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Nichols, 2014), we then assessed the mean similarity value
across participants, wherein an actual observed value was
calculated by averaging the observed z-stat index—reflecting
item reinstatement or neural memory organization—across
participants for each individual voxel. To evaluate the statis-
tical significance of the observed, group-level index, each
across-participant voxelwise z-stat was compared with a null
distribution of 5000 permuted samples via Randomise. The
random permutation approach was conducted in one of two
ways, depending on the type of group contrast. When eval-
uating whether a particular group—child, adult, or the full
sample (child + adult)—exhibited reliable item reinstate-
ment or neural memory organization, a one-sample t test
was performed. In contrast, when evaluating group
differences—children > adults, or vice versa—an
unpaired-sample t test was performed.

With respect to the one-sample approach, on each of
the 5000 permutations, the sign of participants’ z-maps
was randomly inverted within Randomise. That is, a subset
of the participant z-maps was multiplied by−1 and a new,
permuted across-participant index was calculated. The
5000 random inversions were used to compute a voxel-
wise probability map reflecting the proportion of null dis-
tribution sample values greater than or equal to the
observed group-level index (i.e., p values). Put concretely,
a voxel value of p= .01 would indicate that only 50 out of
the 5000 permuted estimates exceeded the actual
observed group-level index.

With regard to the two-sample approach, rather than
changing the sign of participants’ z-maps, each permuted
sample was generated by randomly shuffling assignment
of participants to the adult or child group within Rando-
mise. Here, the 5000 random permutations were used to
compute a voxelwise probability map reflecting the pro-
portion of null distribution sample values greater than or
equal to the observed group difference, run separately for
the adult > child contrast and child > adult contrast. In
this case, a voxel value of p= .01 would indicate that only
50 out of the 5000 permuted estimates exceeded the
actual observed group difference.

Finally, following computation of the voxelwise sta-
tistical maps via Randomise, we then sought to identify
significant clusters of spatially contiguous voxels (Woo,
Krishnan, & Wager, 2014), thereby controlling for the
FWE rate across voxels. Here, we applied FSL’s cluster
function to the statistical output from Randomise, whereby
neighboring voxels for which the p value exceeded our p<
.01 threshold (across participants) were assigned to a clus-
ter and the voxel size of each cluster was summed. We
then used AFNI’s 3dFWHMxmethod and the spatial Auto-
Correlation function to conduct simulations to ask how
often we would expect a cluster of a given voxel size based
on chance alone. First, the smoothness of the original data
on which the native searchlights were run was estimated,
as was how correlated a given voxel was with its neighbors
(i.e., −acf method). Second, the acf estimates were fed
into the AFNI 3dClustSim function (Cox, 1996), which

models the minimum number of contiguous voxels
needed for a cluster to be deemed statistically significant
at a voxel threshold of p< .01 and a cluster threshold of
p< .05. In particular, 3dClustSim generated 10,000 arti-
ficial simulations (the default) with the same dimensions
and smoothness as the searchlight data set, but composed
of noise derived from the residuals of the GLMs used to
model the data inputs to the searchlight analysis (see
above). The maximum cluster size was obtained for every
random permutation. For the observed data, only cluster
sizes that exceeded the 95th percentile value of the ran-
dom cluster sizes were considered significant (i.e., p <
.05; two-sided, second-nearest neighbor).

RESULTS

Children and Adults Learned Overlapping Pairs

Twenty-five adults (M= 19.06, SD= 3.36) and 27 children
between the ages of 7 and 10 years (M= 9.10, SD= 1.11)
learned to associate individual objects with a person or
place (Figure 1A). The same person or place (six each)
was paired with three different objects, for 36 overlapping
pairs. We used stimuli familiar to participants to encourage
high-level performance (see the Methods section), which
in turn allowed us to ask about the neural organizational
schemes that enabled successful memory for related
events at different ages. Moreover, before MRI scanning,
participants completed between two and five learning/
retrieval repetitions until a 90% performance criterion
was reached (Figure 1C; Appendix).
Following learning, participants recalled the pairs dur-

ing MRI scanning. Participants were cued with an object
followed by a 9-sec delay, during which time they were
instructed to hold the associated person or place in
mind for an upcoming match/mismatch memory deci-
sion (Figure 1B). Both children and adults retrieved the
overlapping memories, as evidenced by high and above-
chance performance in both groups (all ts > 25.39, all
ps < .001; Figure 1D). Yet, children still performed worse
than adults, t(31.49) = 5.62, p < .001, d = 1.51, 95%
CI [0.06, 0.12] (Figure 1D). Thus, as a further step to
isolating the neural organizational schemes and memory
reinstatement mechanisms that enabled successful
memory, unless otherwise noted, subsequent analyses
were restricted to trials in which retrieval was successful
during final learning and scanned recall (see the Methods
section; Appendix Table A1 for trial counts).

Children Differentiate Related Memories

To assess organization of related memories in anatomical
hippocampus, we used RSA (Kriegeskorte et al., 2008) to
quantify the similarity among activation patterns evoked
by object cues that were never directly observed together
but that shared an overlapping memory element (person/
place; Figure 2A). In such cases, the related objects might
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Figure 2. Children differentiate
related object cues, whereas
adults integrate. (A) Depiction
of representational similarity
analyses. We compared the
similarity of fMRI patterns for
related as compared with
unrelated objects to assess
evidence for differentiation
(related < unrelated) and
integration (related >
unrelated). (B) Neural patterns
extracted from bilateral
anatomical hippocampus. Box
plots reflect pairwise similarity
values averaged across object
cues that were related or
unrelated, separately for
participants within each age
group. (C) Hippocampal
searchlight regions showing a
significant main effect of
differentiation when examined
across the full sample displayed
on the 1-mm MNI template
brain. Clusters are significant
after small-volume correction
for multiple comparisons within
anatomical hippocampus.
Interrogating effects within
these clusters in each age group
separately revealed significant
differentiation in children but
not adults (box plot). (D)
Whole-brain searchlight region
showing a significant effect of
Integration in medial PFC,
which interacted with age
group, with adults showing
significantly greater integration
than children. Cluster is
significant after correction for
multiple comparisons across
the whole brain. Interrogating
effects within this cluster in
each age group separately
showed that integration was
significant in adults, but
children showed no evidence of
integration nor differentiation.
This analysis also revealed a
significant Age interaction, in
line with the fact that this
searchlight cluster was defined
based on this effect (marked
here simply for clarity).
Additional whole-brain results
related to (C) and (D) are
reported in Appendix Table A2
and Appendix Figures A2 and
A3. For (B–D), box plots depict
the median (middle line), 25th
and 75th percentiles (box), and
the largest individual values no greater than the 5th and 95th percentiles (whiskers). Dots reflect individual participant means; lines connecting
dots depict within-participant differences; n = 52 (27 children; 25 adults). Individual participant values (dots) that extend beyond the whiskers
are considered outliers, defined as values that were 1.5 times greater than the IQR. Asterisks reflect a significant related/unrelated difference within
an age group (*p < .05) whereas tensor product symbols indicate a significant interaction between age group and related/unrelated conditions at
(B) p < .05 or (D) p < .001.
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evoke patterns that are significantly either more or less
similar to one another as compared with unrelated
objects. For such unrelated events, there are no shared
links through which to organize the events, thus serving
as an effective baseline.

There was a trending difference in neural pattern simi-
larity between related and unrelated objects, F(1, 50) =
3.64, p= .06, ηp

2 = .07, that was qualified by an interaction
with Age Group, F(1, 50) = 4.65, p = .04, ηp

2 = .09, such
that children, F(1, 26) = 6.06, p = .02, ηp

2 = .19, 95%
CI [−0.02, −0.002], but not adults, F(1, 24) = .05, p =
.82, ηp

2 = .002, 95% CI [−0.005, 0.007], exhibited hippo-
campal representations for related objects that were less
similar than those for unrelated objects (Figure 2B). Nota-
bly, this differentiation pattern was absent in visual regions
that may instead reflect perceptual similarities among
objects (Appendix Figure A1A) and in neocortical
regions implicated in reinstatement of associated mem-
ory elements (Appendix Figure A1B–C). Moreover, this
effect remained even when we controlled for hippocam-
pal BOLD activation during the cue (Appendix). Our
approach thus enabled us to uncover subtle differences
in the organization of hippocampal memory traces not
reflected in neocortex and that were above and beyond
mean hippocampal activation.

The findings across our a priori anatomical hippocampal
ROI establish that children, but not adults, differentiate
related memories. However, we also know that the same
memories can be represented as both differentiated and
integrated within the same person, within different voxels
across hippocampus and neocortex (Molitor et al., 2021;
Schlichting et al., 2015), raising the possibility that different
organizational schemes might be evident within different
parts of hippocampus. In separate searchlight analyses,
we therefore looked for voxels exhibiting differentiation
or integration of related object cues in hippocampus and
neocortex (Figure 2A). We searched for voxels that showed
developmental differences in representational scheme
(two-sample t test: adult > child; child > adult), as well as
voxels that showed a neural scheme across both groups
(one-sample t test of full sample vs. 0). To verify that signif-
icant coding effects were evidenced in both age groups sep-
arately for clusters identified across the full sample (>0),
and for the group showing enhanced organization for clus-
ters showing developmental differences (e.g., adults for
adult > child contrast), for all significant clusters, we addi-
tionally considered whether effects were present in each
age group separately.

Results in hippocampus showed differentiation in chil-
dren but not adults, but no evidence of integration. Specif-
ically, we found no evidence of hippocampal integration in
adults nor children when considered together, nor any
clusters that showed developmental differences in either
hippocampal integration or hippocampal differentiation.
By contrast, clusters in the left anterior hippocampus
(Figure 2C; cluster center of gravity in the MNI template
coordinates [mm]: x, y, z=−32.1,−18.7,−17.5) and left

hippocampal body (Figure 2C: x, y, z = −29.7, −27.2,
−12.8) showed significant differentiation across the whole
group. However, it is noteworthy that when we interro-
gated these hippocampal clusters within the two Age
Groups separately, we found that this effect was driven
by significant or trend-level differentiation in the child
group (anterior: t(26) = −2.27, p = .03, d = −0.44, 95%
CI [−0.076, −0.004]; body: t(26) = −1.99, p = .06, d =
−0.38, 95% CI [−0.080, 0.001]; average across clusters:
t(26) = −2.90, p = .01, d = −0.56, 95% CI [−0.068,
−0.012]), with no evidence of differentiation just among
adults ( ps > .36; Figure 2C; averaged across clusters). This
pattern hints that although differentiation is the primary
scheme for memory organization in children, it is not
invoked in the adult group in the present task.

Integration Is More Pronounced in Adults

We next asked whether integration was more pronounced
in the adult mPFCor elsewhere. Because different represen-
tational schemes have been previously observed in different
subregions of mPFC (Schlichting et al., 2015), instead of
using an anatomical ROI, here, we chose a searchlight
approach. In particular, we conducted a whole-brain search-
light, asking whether mPFC or any other regions exhibited
integration. As anticipated, the searchlight revealed that
adults showed greater integration in mPFC (Figure 2D;
two-sample t test: adult > child; x, y, z = −15.30, 44.80,
−4.43), as well as in superior parietal cortex and posterior
cingulate (Appendix Table A2; Appendix Figure A2C).
Within the regions showing integration in adults, children
showed either no reliable/significant representational
scheme (mPFC) or differentiation (parietal; posterior cingu-
late; Appendix Figure A2C and A3C). In addition to revealing
a general lack of evidence for integration in children (except
for caudate; Appendix Table A2 and Appendix Figures A2B
and A3B), this whole-brain searchlight further revealed that
children (but not adults) showed differentiation in a
number of other regions (Appendix Table A2), with several
of these clusters showing developmental differences, such
that differentiation was enhanced in children relative to
adults (Appendix Figure A2B and A3A). Together, these
findings suggest that the neural substrates implicated in
memory organization in adulthood may serve a different
representational function earlier in life.

Children and Adults Reinstate Specific Event
Features in Neocortex

Having established that both children and adults systema-
tically organized overlapping memories, with children
relying on differentiation in the hippocampus and neocor-
tex and adults showing integration in neocortical regions
including mPFC, our second goal was to test whether such
discrepant schemes tracked neocortical reinstatement of
the associated memory features. To address this question,
we measured reinstatement at two levels of specificity:
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category (people vs. places) and item (Pinocchio vs. Peter
Pan). We focused on functionally defined reinstatement
ROIs within anatomical VTC and parietal cortex (Figure 3A;
Methods), guided by prior work (Trelle et al., 2020;
Fandakova et al., 2019). Because we were only interested

in effects wherein reinstatement was significantly greater
than zero, all tests measuring above baseline reinstate-
ment were one-tailed.

To quantify the degree to which the target category was
reinstated during the delay period, we trained an MVPA
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classifier (Norman et al., 2006) to identify patterns of activ-
ity associated with face and scene processing within each
functionally defined reinstatement ROI (see the Methods
section and the Appendix: Classifier Validation Accuracy
section; for consideration of an RSA-based category mea-
sure instead, see Appendix Figure A4). We then applied
the trained classifier to patterns of fMRI activation mea-
sured during the 9-sec delay interval (Figure 3B) to quan-
tify the amount of face and scene evidence (see the
Methods section). Both age groups showed categorical
reinstatement in VTC (adult: t(24) = 15.94, p < .001,
d = 3.19, 95% CI [1.01, 1.30]; child: t(26) = 11.24, p <
.001, d= 2.16, 95% CI [0.76, 1.09]; one-tailed), which fur-
ther differed by age, t(50) = 2.08, p = .04, d = 0.58, 95%
CI [0.008, 0.452]; two-tailed), such that adults showed
higher-fidelity reinstatement (Figure 3C). Adults and
children additionally showed reinstatement in parietal
cortex (adult: t(24) = 5.82, p < .001, d = 1.17, 95%
CI [0.35, 0.73]; child: t(26) = 1.95, p = .03, d = 0.38,
95% CI [−0.01, 0.53]; one-tailed; Figure 3C), which did
not differ by age, t(50) = 1.71, p = .09, d = 0.48, 95%
CI [−0.05, 0.61]; two-tailed).

We next examined item-level reinstatement. Specifi-
cally, we used RSA to quantify the similarity between
patterns of fMRI activation measured during retrieval of a
target item and viewing of the same item during a separate
pre-exposure task (same-item similarity; Figure 4A), as
compared with viewing other items from the same visual
category (different-item similarity; see the Methods sec-
tion). Item-level reinstatement in VTC was significant in
adults, t(24) = 2.32, p = .01, d = 0.47, 95% CI [0.001,
0.011]; one-tailed, but only a trend in children, t(26) =
1.52, p= .07, d=0.29, 95% CI [−0.001, 0.009]; one-tailed,
and was not significant at either age in parietal cortex (ts <
1.13; ps > .14; one-tailed). Neither VTC nor parietal item
reinstatement differed as a function of age group (ts <
0.52; ps > .61). Given only modest item reinstatement
effects in the category-selective reinstatement ROIs (being
observed only in VTC and only for adults), we additionally
conducted a whole-brain, item-level reinstatement search-
light analysis, which was small-volume corrected within
the VTC and parietal reinstatement ROIs as well as within

hippocampus given prior adult work (Mack & Preston,
2016). For both groups, we found significant item rein-
statement in more focal regions within the functionally
defined reinstatement ROIs as well as elsewhere in the
brain (Appendix Table A3; Appendix Figure A5), although
developmental differences were observed in hippocam-
pus, with the locus of item reinstatement shifting from
posterior to anterior between childhood and adulthood
(Appendix Figure A6).
We also wanted to confirm thatmodest evidence of item

reinstatement in the VTC and parietal ROIs was not an arti-
fact of the long delay, particularly in children. To address
this possibility, we performed additional analyses in which
we separately considered reinstatement during the first
and second halves of the delay period in both age groups
(see the Methods section). There were two possible ways
in which reinstatement might differ by half. The first pos-
sibility was a decrease in reinstatement across the delay,
suggesting that the delay may be too long for children to
hold the reinstated memory in mind. The second possibil-
ity was that we would instead see an increase in reinstate-
ment, which would support the idea that it took children
time to reinstate the memory (as we anticipated; Hajcak &
Dennis, 2009; see theMethods section). Our results of this
supplementary analysis were generally more consistent
with the latter of the two possibilities, showing that both
children and adults exhibited evidence of reinstatement
across the full 9-sec delay, with category (and some item)
reinstatement evidence being stronger in the second half
of the delay immediately before the decision probe
(Appendix Figure A7).

High-fidelity Neocortical Reinstatement Is Linked
to Mnemonic Decision-Making

One important clue as to whether neocortical reinstate-
ment directly guides memory behavior comes from
asking how it relates to decision behavior on a trial-by-
trial basis, in which participants were asked to judge
whether the retrieved memory matched the decision
probe (Figure 1B). To test this, we conducted mixed
effects and DDMs to examine whether variability in item

Figure 3. Children and adults reinstate the target category. (A) Voxels included within the VTC and parietal fROIs, separately for each age group. For
each participant, we tested for reinstatement in the voxels that they engaged most during face and scene perception in a separate localizer task,
within VTC and parietal cortex separately. Maps show the percentage of participants who had that same voxel in their fROI, plotted as a color-coded
gradient. (B) Category decoding approach. We trained a multivoxel pattern analysis classifier to identify patterns of activity associated with face and
scene processing in the VTC and parietal fROIs separately. For each delay retrieval pattern—which was modeled as a single voxelwise beta image
across the 9-sec retrieval period—we then applied the trained pattern-classification algorithm to estimate the amount of evidence for the target
category (i.e., face or scene) reinstated. For each participant, we computed a single target reinstatement index by averaging the target classifier
evidence (continuous probabilities) across trials, within each fROI separately. To correct for non-normality, the raw classifier output was transformed
to logits. (C) VTC (left) and parietal cortex (right) category reinstatement. A reinstatement index reliably above 0 (i.e., the black dashed line) indicates
significant target category evidence. Box plots depict the median (middle line), 25th and 75th percentiles (box), and the largest individual values no
greater than the 5th and 95th percentiles (whiskers). Dots reflect individual participant means; n = 52 per plot (27 children; 25 adults), with dots
extending beyond the whiskers reflecting outliers, defined as values that were 1.5 times greater than the IQR. Asterisks above each box reflect a
significant within-group effect at a one-tailed threshold of p < .05 (*) or p < .001 (**), whereas asterisks between bars reflect a significant between-
group effect at a two-tailed threshold of p < .05.
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(Figure 4B; same-item similarity) and category (Figure 3C)
reinstatement during the delay predicted the probability
of making a correct and/or faster response within a par-
ticipant on a given trial (see the Methods section).
Because our mixed effects model tested which reinstate-
ment signatures (VTC item, VTC category, parietal item,
parietal category; in a single model) were associated with
correct versus incorrect performance, we did not restrict
our analyses to correct trials.
We found that more strongly reinstated memories were

associated with more accurate responses (VTC category
reinstatement: χ1

2 = 4.12, p = .04; Figure 5A, left; trend
for parietal cortex item reinstatement: χ1

2 = 3.52, p =
.06; Figure 5A, right), which were significant predictors
of performance despite the fact that our model addition-
ally accounted for the main effect of age (χ1

2 = 29.08, p<
.001; model comparison: AICbase = 848.16, AICMainEffect =
817.74, χ1

2 = 32.42, p< .001; a more complex model that
allowed reinstatement to interact with age did not signifi-
cantly improve model fit, χ1

2 = 0, p= 1.00), as well as the
potential influence of univariate activation, including cue-
period hippocampal BOLD activation (χ1

2 = 3.47, p= .06)
and delay-period VTC and parietal BOLD activation (χ1

2 <
0.24, ps > .63). Follow-up analyses of each age group sep-
arately showed that this effect was found in children (VTC:
χ1
2 = 3.62, p= .06; parietal: χ1

2 = 3.42, p= .06) but not in
adults ( ps > .56).
Likewise, in adults (who reached ceiling levels of accu-

racy) but not children, faster responses were associated
with more strongly reinstated memories (Figure 5B, right;

parietal item) while controlling for hippocampal BOLD
activation during the cue, which was shown to be a signif-
icant predictor of accuracy above. Furthermore, in line
with the observation that reinstatement increased over
the delay, reinstatement at the end (but not beginning)
of the delay was behaviorally significant, predicting
response accuracy in children and speed in adults
(Appendix Figure A8).

Different Representational Schemes Have Benefits
for Reinstatement at Different Ages

We found that children and adults deploy high-fidelity
neocortical representations (Figures 3 and 4) in service
of mnemonic decisions (Figure 5). However, whereas
children rely on hippocampal differentiation to organize
relatedmemories (Figure 2B), adults relied on integration,
including in mPFC (Figure 2D) as anticipated. In a final set
of analyses, we thus tested whether the degree of hippo-
campal differentiation and mPFC integration was associ-
ated with neocortical reinstatement in children and adults,
respectively. In addition to our a priori hypothesis regard-
ingmPFC integration, we further explored the relationship
between neocortical reinstatement and other searchlight
regions that revealed significant integration, either in adults
(parietal cortex, posterior cingulate) or children (caudate).
When quantifying delay-period reinstatement, we focused
on only those functionally defined neocortical ROIs that,
in both age groups and across the full delay, either showed
(1) reliable reinstatement (i.e., category in VTC and

Figure 4. Children and adults reinstate target items. (A) RSA approach. RSA was implemented at the level of the full category-selective fROIs (from
Figure 3A) as well as at the individual voxel level via separate searchlight analyses (see Appendix Table A3 and Appendix Figures A5 and A6). During
item perception/the pre-exposure task, participants indicated whether an arrow superimposed on each stimulus (face/place) was pointing left or
right. For each scanned recall trial, we correlated fMRI activation patterns from the delay period with viewing of the same item during a pre-exposure
item perception localizer (same-item; solid arrow), which was compared with viewing of different items from the same visual category (different-item
baseline; dashed arrow). For each participant, we computed a single-item reinstatement index by averaging the mean same item − different item
similarity difference across recall trials. (B) Pattern similarity results within VTC (left) and parietal cortex (right) fROIs. A mean reinstatement index
reliably above 0 indicates significant item evidence, reflecting greater same-item similarity as compared with the different-item baseline. Box plots
depict the median (middle line), 25th and 75th percentiles (box), and the largest individual values no greater than the 5th and 95th percentiles
(whiskers). Dots reflect individual participant means; n = 52 per plot (27 children; 25 adults), with dots extending beyond the whiskers reflecting
outliers, defined as values that were 1.5 times greater than the IQR. Symbols above each box reflect a significant within-group effect at a one-tailed
threshold of p < .05 (*) or that is at trend levels (∼). The letters “ns” above and between bars indicate a nonsignificant within-group or between-
group effect, respectively.
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parietal cortex; Figure 3C) or for which (2) trial-wise vari-
ability in reinstatement was linked to behavior (i.e., item
reinstatement in parietal; Figure 5) at significant or trend
levels.

Memory organization in the hippocampus (anatomical)
and mPFC (searchlight cluster) were significantly associ-
ated with category-level reinstatement in VTC for children
and adults, respectively. Specifically, hippocampal differ-
entiation was associated with enhanced reinstatement in
children, t(57.15) = −2.29, p = .03, but not in adults,
t(43.59) = 0.43, p= .67; relationship differed significantly
between the two groups (interaction: χ1

2 = 3.78, p = .05;
AICbase = 10042, AICinteraction = 10041,χ2

2 = 4.75, p= .09;
Figure 6A). Conversely, mPFC integration was associated
with enhanced reinstatement in adults, t(43.31) = 2.36,
p = .02, but not in children, t(57.84) = −1.32, p = .19;
interaction: χ1

2 = 6.69, p= .01; AICbase = 10043, AICinterac-

tion = 10042, χ3
2 = 7.52, p = .06 (Figure 6B). In addition,

Figure 5. Enhanced neocortical reinstatement in children and adults
promotes superior memory behavior. We tested the within-participant
association between raw same-category and same-item reinstatement
during the delay period with the probability of making either a correct
(A) or speeded (B) match/mismatch behavioral response. (A) Results of
mixed effects model examining decision accuracy. Here, significant
predictors are depicted in separate plots for visualization purposes only,
as all predictors (see Methods section) were included in a single
statistical model. All predictors were scaled and centered within
participants to remove participant-specific effects. For both plots, n =
52 (27 children; 25 adults); Age Group was modeled as a main effect.
We found that greater category-level reinstatement in VTC (left) and a
trend for greater item-level reinstatement in parietal cortex (right) each
predicted successful performance. Lines (solid and dashed) reflect
model predictions, whereas shaded areas reflect 95% confidence
interval around the model predictions. (B) Results of DDMs examining
decision speed. Here, the VTC category and parietal cortex item
reinstatement indices were entered into a single DDM of response
speed, modeled as a linear effect on the drift rate parameter that
reflects the rate of evidence accumulation (with two separate models
run, one each for children and adults). Whereas higher drift rate
coefficients reflect faster evidence accumulation and RT; lower values
reflect slower evidence accumulation and RTs. The interaction of drift
rate and reinstatement in VTC (left) and parietal cortex (right) are
depicted as forest plots. The lines represent 95% confidence intervals of
the 2000 posterior parameter estimates (one-tailed), with circles
representing the mean of the posterior parameter distributions. Greater
item reinstatement in parietal cortex predicted faster RTs, but only in
adults, which was reflected by drift rate coefficient confidence intervals
not encompassing and greater than 0. No significant effects were
observed for category reinstatement in VTC, in either adults or children.

Figure 6. The hippocampal and mPFC representations that governed
how related memories were organized tracked the degree of ensuing
neocortical reinstatement of the associated face and scene elements at
the within-person level. In both panels, for each participant and
retrieval trial separately, we computed the averaged similarity of a
retrieval cue object with related cue objects that shared the same face
or scene associate (Figure 2A; related similarity). Thus, whereas lower
cue similarity values reflect greater dissimilarity of related memories,
higher values reflect greater similarity. We tested the association
between that cue similarity value with reinstatement during the
corresponding delay period for that same retrieval trial (Figure 3B;
target reinstatement example trial). (A) In children (solid green line),
but not adults (dashed green line), there was a negative trial-wise
association between cue similarity in anatomically defined bilateral
hippocampus (Figure 2B) and category reinstatement in VTC. In other
words, lower similarity in hippocampus was associated with higher-
fidelity reinstatement of the target category. (B) In adults (dashed
purple line) but not children (solid purple line), there was a positive
trial-wise association between cue similarity in the mPFC region defined
from the searchlight (Figure 2D) and category reinstatement in VTC.
That is, greater similarity in mPFC was associated with higher-fidelity
reinstatement of the target category. For both columns (each
comprising a different model), age group was modeled as an interaction
and both interaction terms were significant at a threshold of p ≤ .05
(marked here with a tensor product symbol). For each model,
predictors (x axis) were scaled and centered within participants to
remove participant-specific effects. Lines (solid and dashed) reflect
model predictions, whereas shaded areas reflect 95% interval around
the model predictions.
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mPFC integration was associated with item-level reinstate-
ment in parietal cortex (χ1

2 = 7.77, p = .005; best-fitting
model was one that did not include age group [i.e., base
model; main effect and interaction model fits: ps > .28]);
this same relationship was not evidenced for hippocampal
cue organization (χ1

2 = 2.39, p = .12; base model). Fur-
thermore, neither hippocampal nor mPFC cue organiza-
tion was associated with category reinstatement in parietal
cortex (hippocampus: χ1

2 = 2.02, p = .16; mPFC: χ1
2 =

0.93, p = .33; both base models).
Finally, in contrast tomPFC, which revealed a significant

association between memory integration and VTC cate-
gory reinstatement among adults, there was no such
association between cue organization and VTC category
reinstatement in other regions that showed significant
memory integration (Appendix Figures A2 and A3), includ-
ing in parietal cortex (interaction:χ1

2 = 3.09, p= .08, adult
slope: p = .12, child slope: p = .35; interaction model fit:
p = .13), posterior cingulate (interaction: χ1

2 = 5.06, p =
.02, adult slope: p = .07, child slope: p = .19; interaction
model fit: p = .05), or caudate (base model: χ1

2 = 0.37,
p = .54; main effect and interaction model fits: ps >
.31). Together, the findings suggest that different
hippocampal and mPFC organizational schemes are
uniquely and differentially beneficial for reinstatement
at different ages.

DISCUSSION

Prominent developmental theories have long proposed
that age-related improvements in learning and cognition
are rooted in the emergence of an increasingly complex
representational system (Karmiloff-Smith, 1986). Yet
despite both its theoretical importance (Keresztes et al.,
2018; Bauer & Varga, 2017) and educational relevance
(Varga et al., 2019), the question of how children—for
whom the neural substrates supporting memory are still
developing (Schlichting et al., 2017, 2022; Bauer et al.,
2019; Keresztes et al., 2018; Brod et al., 2017; Fandakova
et al., 2017; Simmonds et al., 2014; Ghetti & Bunge, 2012;
Østby et al., 2009; Ofen et al., 2007)—represent related
events to enable later memory retrieval remains unan-
swered. By leveraging fMRI with representational analysis
methods, we show that children code related memories
via hippocampal differentiation, wherein events that share
overlapping features are represented as less similar to one
another compared with unrelated events. In contrast,
adults deploy an alternate representational scheme in
which memories for related experiences are integrated,
including within mPFC, wherein related events are more
similar to one another than they are to unrelated events.
Critically, these representational schemes were associated
withmemory reinstatement in children and adults, respec-
tively; that is, hippocampal differentiation in children and
mPFC integration in adults each tracked higher-fidelity
neocortical reinstatement, which in turn was linked to
superior memory behavior in both groups. Together,

these findings indicate that children may be biased toward
disambiguating overlapping experiences, whereas adults
build representations that code common features across
them. Such a shift in memory organization may confer
certain behavioral advantages during each period in
development.

Our primary objective in designing the present study
was to isolate how the developing brain organizes overlap-
ping experiences in ways that enable successful, high-
fidelity retrieval of individualmemories. Although children
often perform less accurately than adults when both dis-
ambiguating between (Ngo et al., 2018; Rollins & Cloude,
2018) and integrating across (Bauer et al., 2021; Wilson &
Bauer, 2021; Shing et al., 2019; Schlichting et al., 2017)
overlapping events, such developmental differences need
not reflect a fundamental inability to retrieve overlapping
experiences. Indeed, children as young as 6 years can suc-
cessfully recall and connect related experiences (Bauer &
San Souci, 2010), whereas discrimination of highly similar
memories becomes adult-like by approximately 10 years
(Rollins & Cloude, 2018). These behavioral findings hint
at important changes in the neurobiological system that
supports representation of related events and highlights
middle childhood (7–10 years) as a candidate window in
which the memory system has achieved at least some
adult-like functionality. Yet studies of behavior cannot tell
us how children successfully represent and recall related
experiences or whether they do so based on the same or
different types of memory representation as evidenced in
adults. By quantifying representational similarity of related
events as they were recalled from memory, the present
study thus offers a novel window into the representational
competencies available within the early hippocampal and
mPFC memory systems.

We found that hippocampal differentiation, but not
integration, was associated with successful learning and
retrieval of relatedmemories in children. Our finding joins
one prior study showing hippocampal differentiation in
children of a similar age (Benear et al., 2022). One notable
extension of the prior work is that, here, we measured
neural representations only following multiple learning
and retrieval attempts, which enabled us to identify the
neural organizational schemes that underpinned success-
ful memory behavior. In contrast, the neural representa-
tions in prior research (Benear et al., 2022) were assessed
during initial exposure, and moreover, subsequent mem-
ory for the related experiences was not assessed. As the
prior study showed children exhibited hippocampal differ-
entiation only for previously experienced stimuli (i.e.,
familiar movies; Benear et al., 2022), but not for newly
encodedmovies, we suggest that, here, themultiple learn-
ing and test repetitions may have encouraged robust dif-
ferentiation in children. Indeed, we know that children
struggle to spontaneously organize related memories dur-
ing learning (Abolghasem et al., 2023; Bauer et al., 2015;
Varga & Bauer, 2013). Thus, by interleaving learning expo-
sures with explicit retrieval tests, thereby strengthening
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overlapping memory formation, our study provides key
insight into the endpoint of learning. In doing so, our
results reveal hippocampal differentiation—an active cod-
ing strategy that might help resolve interference among
related memories (Chanales et al., 2017; Favila et al.,
2016; Hulbert & Norman, 2015)—as a means through
which the still-developing brain organizes experience
and, ultimately, achieves successful neocortical reinstate-
ment and retrieval behavior. The present results thus
reveal new insights into the relationship betweenmemory
representation and behavior in children that could have
implications for our understanding of how to promote
overlapping memory, key predictors of educational suc-
cess (Varga et al., 2019).

Beyond the hippocampus, children in our study showed
differentiation broadly across many neocortical regions.
Such a tendency toward differentiation—or in some
regions, an entire lack of systematic organization, perhaps
akin to pattern separation, wherein nonoverlapping traces
arise through automatic orthogonalization (Norman &
O’Reilly, 2003)—contrasted with the representations we
observed in adults, which were largely integrated. Impor-
tantly, the observed lack of neural integration in children
aligns with past evidence (Schlichting et al., 2022; Bauer
et al., 2021; Wilson & Bauer, 2021) and cannot be
explained by age-related differences in either behavior
(Sastre et al., 2016) or prior experience (Benear et al.,
2022), as has been suggested to drive other age-related
activation and representational differences reported in
the literature. Indeed, one exception to this overwhelming
bias in children toward differentiation was in caudate,
which showed integration. Importantly, such evidence
helps to constrain our interpretation of null integration
effects elsewhere, suggesting that, should children have
formed this type of representation in either the hippocam-
pus or mPFC, our neural analytic approach was sufficiently
powered to detect it.

Such an observation of integration in caudate under-
scores that children are not fundamentally incapable of
this coding scheme, but rather that it may simply be less
prevalent in their brains, primarily appearing in regions
that mature earlier than neocortex (van den Bos, Cohen,
Kahnt, & Crone, 2012). We speculate that the isolation of
integration to caudate could indicate a role for simple
action-outcome learning during the feedback phase of
the three-alternative, forced-choice test (van denBos et al.,
2012). As a reminder, to assess initial learning of the indi-
vidual pairs, participants were cued with an object and
instructed to choose the face or scene that was paired with
it. By providing corrective feedback after each choice
(action), we may have drawn children’s attention to the
shared face/scene “outcome” (which appeared in the
center of the screen) across test trials. Caudate aside,
our finding of overwhelming neocortical differentiation
might suggest that children’s neural biases can be charac-
terized as shifting from differentiated (or pattern sepa-
rated) to integrated over developmental time.

The observed age-related shift from differentiation
toward integration is consistent with recent behavioral
studies indicating pronounced developmental differences
in reasoning behaviors that rely on extracting novel rela-
tions among memories. Although children are able to
combine related memories to derive new factual knowl-
edge (Bauer & San Souci, 2010) or make inferential rea-
soning judgments (Schlichting et al., 2017)—behaviors
thatmay seem to imply and indeed (in adults;Molitor et al.,
2021; Varga & Manns, 2021; Schlichting & Preston, 2014;
Zeithamova et al., 2012) benefit from neural integration—
children may be accomplishing these same tasks using
fundamentally different types of memories relative to
adults (Bauer et al., 2021; Wilson & Bauer, 2021; Varga
et al., 2019). For example, in contrast to adults, children
often do not connect related facts or events during learn-
ing either spontaneously (Bauer et al., 2021; Wilson &
Bauer, 2021) or even when instructed to do so (Abolghasem
et al., 2023; Schlichting et al., 2022; Bauer et al., 2015). By
contrast, similar instructions provided immediately before
an inference test do facilitate performance (Bauer et al.,
2015), suggesting an instruction facilitates interrogation
of separate memories during flexible decision-making.
Such behavioral data coupled with the differentiated

neocortical organization observed here therefore points
to the possibility that performance on reasoning tasks
may be achieved by different underlying neural memory
representations in children and adults (Kumaran &
McClelland, 2012). Specifically, whereas adults may access
an integrated representation directly to facilitate behavior,
children may instead retrieve individual (differentiated or
separated) representations and later recombine them
when explicitly prompted to make an inference judgment
(Schlichting et al., 2022; Wilson & Bauer, 2021; Bauer &
Varga, 2017). As we did not directly assess participants’
inferential reasoning or knowledge extraction behaviors,
how such memory flexibility may be supported by differ-
ent representational schemes across development
remains to be seen. However, here, we do see that differ-
entiation improved reinstatement of directly learned
events in children, whereas integration was beneficial in
adults, thus revealing that different organizational
schemes are beneficial at distinct ages.
In contrast to children, adults showed evidence for neu-

ral memory integration in several neocortical regions
including mPFC. Importantly, such neural integration
emerged despite no explicit demand to link related asso-
ciations in memory. Indeed here, participants were
instructed that they would need only to remember individ-
ual pairs, and in fact there was no behavioral requirement
that participants make the novel connections (as in, e.g.,
inferential reasoning). Such evidence of neural integration
is consistent with both computational models of inference
(Ritvo, Nguyen, Turk-Browne, & Norman, 2024) and
extant empirical data from adults (Molitor et al., 2021;
Schlichting et al., 2015). For example, when trained to per-
form a task very similar to the one employed here, neural
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network models learn indirect connections between
objects that share features and outcomes without rein-
forcement (Morton et al., 2020). In other words, integra-
tion is an emergent property of these models and parallels
neural organization in human mPFC. Likewise, in prior
adult work, integration has been observed during/after
overlapping pair learning but before any explicit demand
to make links among memories in a behavioral inference
task (or even awareness that such a test is forthcoming;
Molitor et al., 2021; Varga &Manns, 2021; Schlichting et al.,
2015; Schlichting & Preston, 2014; Zeithamova et al.,
2012). Interpreting the present data in the context of this
prior literature, we thus conclude that a mature mPFC not
only represents directly experienced associations, but fur-
ther encodes the inferred latent structure of a task or an
individual’s environment (Chan et al., 2016). Certain other
aspects of our study, such as the use of well-known stimuli,
may have further encouraged mPFC integration as partic-
ipants could incorporate the new associations into existing
memory networks (Bein et al., 2020).
In contrast to the mPFC integration findings, adults did

not show significant evidence of either integration or dif-
ferentiation in the hippocampus. Although this null effect
may on its surface appear to conflict with prior adult studies
(Molitor et al., 2021; Schlichting et al., 2015), we suggest
that it does not; rather, these findings can be reconciled by
considering the nuanced set of individual differences and
situational factors (Zeithamova & Preston, 2017) that pro-
mote integration or differentiation in the mature brain.
With respect to individual differences, even when holding
the learning scenario constant, adults appear to vary in
their representational tendencies (Varga & Manns, 2021;
Schlichting & Preston, 2014; Zeithamova et al., 2012).
For instance, white matter integrity between the hippo-
campus and mPFC predicts individuals’ ability to link
related events in memory (Schlichting & Preston, 2016).
Along with other stable, individual differences in brain
structure (Bauer et al., 2019; Schlichting et al., 2015,
2017), differences in strategy use (Richter et al., 2016),
working memory capacity (Varga et al., 2019), and even
culture (Millar, Serbun, Vadalia, & Gutchess, 2013) may
change how individuals organize related memories. In
the present study, significant variability across participants
for any of these factors would preclude observing reliable
integration or differentiation across our group of adults,
on average, without undermining the interpretation of
our developmental findings.
An additional and perhaps related possibility for the null

hippocampal findings in adults relates to the fact that the
mature hippocampus is flexible and can form either differ-
entiated or integrated representations, sometimes in par-
allel across different subregions (Molitor et al., 2021),
depending on the specifics of the learning situation. For
example, one study (Schlichting et al., 2015) showed (ante-
rior) hippocampal integration when initial associations
were learned to a high level of accuracy before overlap-
ping pairs were introduced, yet (both anterior and

posterior) differentiation when overlapping associations
were instead studied in an interleaved order. Notably, in
that study, distinct regions of mPFC exhibited integration
regardless of learning schedule, underscoring that it may
complement more flexible hippocampal codes, with
mPFC being comparatively less sensitive to task features.
Thus, one possibility is that the interleaved training and
more complex associative structure (i.e., three overlap-
ping pairs as opposed to two) biased the adult hippocam-
pus but not mPFC away from integration, while at the
same time providing insufficient exposures to yield strong
and consistent hippocampal differentiation (Chanales
et al., 2017; Favila et al., 2016).

Two other neocortical regions—parietal cortex and pos-
terior cingulate—showed memory organization schemes
that differed significantly across age group, with children
showing differentiation and adults integration. In other
words, the same voxels in these regions served diametri-
cally opposite representational functions across develop-
ment. Such findings generally align with past work. One
possibility suggested by recent adult MRI data (Pudhiyidath
et al., 2022; Morton et al., 2020; Baldassano, Hasson, &
Norman, 2018) is that both parietal cortex and posterior
cingulate play privileged roles in forming and utilizing rela-
tional learning structures. For example, posterior cingulate
in adults has been implicated in forming knowledge struc-
tures that reflect spatiotemporal regularities (Pudhiyidath
et al., 2022; Baldassano et al., 2018) while parietal cortex
enables “shortcuts” through representational space to sup-
port rapid memory-guided decisions (Morton et al., 2020).
At the same time, others have speculated that parietal cor-
tex is an episodic memory buffer that accumulates mne-
monic evidence for decision-making (Zhang, Yin, & Yang,
2022; Vilberg & Rugg, 2008). In the present study, parietal
cortexmay index accumulation of the differentiated repre-
sentations in children (from hippocampus) and the inte-
grated representations in adults (from mPFC), before
reflecting accumulation of the associated face/scene dur-
ing the delay. However, note that here, in contrast to the
hippocampus and mPFC, parietal organization during the
cue did not predict reinstatement of the associated face or
scene during the ensuing delay, which might be expected
under such an explanation. Interestingly, very few studies
have interrogated parietal or posterior cingulate develop-
ment, and those that did tended to focus on the develop-
ment of metamemory processes (Fandakova et al., 2017;
Tamnes et al., 2013). The present findings thus build on
this work, suggesting that children and adults may rely
on similar neocortical sites to activate a relevant memory
space, the nature of which fundamentally differs as a func-
tion of age-related capacities in hippocampus and mPFC.

Our neural pattern analysis approach allowed us to
detect memory reinstatement in both children and adults,
which was moreover linked to behavior in both groups.
Specifically, children and adults alike showed evidence
of category- and item-level reinstatement of associative
memory elements in neocortex. Notably, whereas adults
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showed broad evidence of item reinstatement in the VTC
ROI as a whole across the entire delay, item-level
reinstatement in children was observed at significant or
trend levels (1) across the whole VTC ROI, but only during
the second half of the delay (Appendix Figure A7; trend) or
(2) in a number of searchlight clusters across the entire
delay (Appendix Figure A5). Beyond neocortex, we further
showed that both children and adults reinstate specific
item memories in the hippocampus. Consistent with the
view that that memory processes are differently distrib-
uted in the immature hippocampus (DeMaster & Ghetti,
2013), we showed that children recruited only the poste-
rior hippocampus, in contrast to adults who recruited the
anterior hippocampus (Appendix Figure A6). Together,
these findings suggest that it is possible to quantify the
internal contents of specific memories in children, pro-
vided the methods are sensitive to its relatively more cir-
cumscribed physical location and more delayed temporal
profile. Although prior work has shown that children and
adults form similar neocortical representations of specific
items at encoding (Fandakova et al., 2019), here, we
extend this finding to show comparable representations
at retrieval. Moreover, the degree to which the associated
faces/scenes were reinstated in neocortex, particularly
during the second half of the delay, had relevance for
memory-based decision-making. More specifically, greater
category-level VTC and item-level parietal reinstatement
predicted successful decisions in children, whereas
greater item-level parietal reinstatement predicted faster
decision speed in adults. As discussed above, these find-
ings are generally consistent with the view that parietal
cortex plays a privileged role in accumulating mnemonic
evidence in service of decision-making (Zhang et al.,
2022).

Theories ofmemory development have long speculated
that memory in childhood depends on the integrity of the
hippocampal–neocortical system (Ghetti & Bunge, 2012),
and the strengthwith which distributedmemory traces are
bound together, in particular (Howe & O’Sullivan, 1997).
Therefore, having established the behavioral relevance of
neocortical reinstatement, our final question was whether
the hippocampal and mPFC representational schemes
employed to organize overlapping memories tracked the
fidelity with which those associated memory elements
were reinstated in neocortex. mPFC representations
related to item-level reinstatement in both groups, but this
signature did not show developmental differences.
Interestingly, however, we did observe significant age dif-
ferences in the organizational schemes predicting
category-level reinstatement: Specifically, trial-by-trial hip-
pocampal differentiation among children (but not adults)
andmPFC integration among adults (but not children) each
tracked with category reinstatement in VTC. These associa-
tions were unique to hippocampus andmPFC, as they were
not observed in other regions showing significant integra-
tion in either children or adults (i.e., parietal cortex, poste-
rior cingulate, and caudate). By testing the relationship

between representations in the hippocampus and mPFC
and neocortical reinstatement, the current study further
establishes a role for the hippocampus and mPFC in rein-
stating neocortical traces in development—a correspon-
dence that has previously only been shown in adults (Hindy,
Ng, & Turk-Browne, 2016; Mack & Preston, 2016). Collec-
tively, our results reveal that children and adults both engage
in neocortical memory reinstatement, but through different
representational pathways, underpinned by hippocampal
and mPFC organization.
Taken together, the present research provides key

insight into the development of neural representations
associated with learning, representing, and retrieving
overlapping events from memory. We show that memory
for related events was associated with different underlying
representational schemes at different ages. Specifically,
children exhibited differentiation in the hippocampal sys-
tem, which was linked to higher-fidelity neocortical rein-
statement of event details, that in turn was associated with
superior memory behavior. In contrast to children, hippo-
campal differentiation was unrelated to neocortical rein-
statement in adults; instead, in adults, mPFC integration
benefitted neocortical reinstatement, which in turn
tracked faster response speeds. Our findings align well
with current perspectives of neural development, which
suggest that differences in the maturational pace of the
hippocampus and prefrontal cortex—and the neural
representations they support—contributes to the shift in
balance between memory specificity and flexibility
(Keresztes et al., 2018). Notably, the findings further sug-
gest that children and adults form and retrieve memories
using different types of representations. Importantly,
given that the ability to organize, retrieve, and extend
memories for related information is critical to knowledge
development and predicts long-term academic success in
both children and adults (Varga et al., 2019), the present
results suggest that reducing overlap among related
information may aid learning and memory in education-
ally relevant ways.

APPENDIX

Age-related Learning Differences

Most participants (n = 47 out of 52) had two learning
exposures (Figure 1C). Five children required more than
two exposures, yielding statistically more exposures, on
average, in the child comparedwith the adult group (child:
M total exposures = 2.29, SD = 0.72; adult: M total expo-
sures = 2.00, SD= 0.00; t(26) = 2.13, p= .04, d=−0.57,
95% CI [−0.58,−0.01]). Of the five children who required
more than two exposures, three (one 8-year-olds and two
9-year-olds) required three exposures, one (7-year-old)
required four exposures, and one (7-year-old) required
five exposures. Notably, two of the children who had three
exposures reached the 90% learning criterion on the first
exposure but then dropped below criterion on the second

880 Journal of Cognitive Neuroscience Volume 37, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/37/4/853/2497211/jocn_a_02299.pdf by U
N

IVER
SITY O

F TEXAS AT AU
STIN

 user on 28 April 2025



exposure. To rule out the possibility that their initial success
was due to guessing rather than learning, we had the partic-
ipants complete a third exposure. With these additional
repetitions, children achieved a similar level of final
learning performance to adults (children: accuracy
[proportion correct] = 0.96, SD= 0.03; adults: accuracy
[proportion correct] = 0.99, SD = 0.02). Nevertheless,
performance on the final learning run was still statistically
higher in adults, t(45.05) = 4.24, p< .001, d= 1.16, 95%
CI [0.02, 0.04].
In addition to comparing learning performance between

age groups, we also tested for age-related performance
differences within the child group alone. More specifi-
cally, we tested for differences between younger (7-
and 8-year-olds; n = 14) and older (9- and 10-year-olds,
n = 13) children, which resulted in nonsignificant differ-
ences in initial learning (i.e., Learning Exposure 1; youn-
ger: accuracy = 0.83, SD = .10; older: accuracy = .82,
SD = .18; t(18.69) = 0.19, p = .85, d = 0.08, 95% CI
[−0.11, 0.13]), final learning (younger: accuracy =
0.96, SD = .03; older: accuracy = .97, SD = .03; t(25) =
−.59, p = .56, d = −0.23, 95% CI [−0.03, 0.02]), and the
number of total learning exposures completed (younger:
M total exposures = 2.43, SD = .94; older: M total expo-
sures = 2.15, SD = .38; t(17.32) = 1.01, p = .33, d =
0.38, 95% CI [−0.29, 0.85]).

Notably, most adults did not need a second learning
exposure but were required to complete one to better
equate the number of total learning exposures across
age groups. More specifically, whereas 76% of adults (n =
19) reached the 90% accuracy criterion on the first learning
exposure, only 37% of children (n= 10, which includes the
two children who dropped below criterion on the second
exposure; see above) reached the same criterion within a
single exposure. Thus, by requiring a minimum of two
learning exposures regardless of initial performance, we
ensured that most child and adult participants (n = 47;
see above) had an equivalent number of exposures, which
would not have been the case otherwise.

Hippocampal Differentiation Controlling for
Univariate Activation

The overall difference in pattern similarity between related
and unrelated object cues observed in children in bilateral
anatomical hippocampus (Figure 2B) remained when
mean hippocampal univariate activation during the cue
period was entered as a covariate into the ANOVA,
F(1, 25) = 4.65, p = .04, ηp

2 = .16, 95% CI [−0.020,
−0.002]. This finding suggests that the decreased
representational similarity observed for related relative
unrelated memories cannot be attributed to broad

Figure A1. Children and adults show no evidence of neural organization (neither differentiation nor integration) in visual or reinstatement regions.
For (A–C), plots feature pairwise similarity values averaged across object cues that were related or unrelated, separately for participants within each age
group (n = 52; 27 children, 25 adults). Box plots depict the median (middle line), 25th and 75th percentiles (box), and the largest individual values
no greater than the 5th and 95th percentiles (whiskers). Dots reflect individual participant means, with dots extending beyond the whiskers reflecting
outliers, defined as values that were 1.5 times greater than the IQR. (A) Neural patterns extracted from bilateral lateral occipital (LO) cortex, derived
from an automated anatomical mask using Freesurfer segmentation. There was neither a main effect of Similarity, F(1, 50) = 0.60, p = .44, ηp

2 = .01,
nor an interaction with Age Group, F(1, 50) = 2.43, p = .13, ηp

2 = .05. Given that significant hippocampal differentiation was only observed in the
child group, we also examined the effect of similarity in this group alone. There were no significant differences between related and unrelated object
cues, F(1, 26) = 1.87, p= .18, ηp

2 = .07, 95% CI [−0.02, 0.01], suggesting that the primary hippocampal differentiation effects cannot be attributed to
neural similarity of the visual objects themselves, but rather result from mnemonic coding schemes. (B) Neural patterns extracted from functionally
defined VTC (see Figure 3A and Methods section). There was neither a main effect of Similarity, F(1, 50) = 0.88, p = .35, ηp

2 = .02, nor an interaction
with Age Group, F(1, 50) = 0.85, p = .36, ηp

2 = .02. There were also no significant difference between related and unrelated object cues when we
examined children alone, F(1, 26) < 0.001, p = .99, ηp

2 < .001, 95% CI [−0.015, 0.014]. (C) Neural patterns extracted from functionally defined
parietal cortex (Figure 3A and Methods section). There was neither a main effect of Similarity, F(1, 50) = 0.28, p = .59, ηp

2 = .01, nor an interaction
with Age Group, F(1, 50) = 0.52, p = .48, ηp

2 = .01. There were also no significant difference between related and unrelated object cues when we
examined children alone, F(1, 26) = 0.59, p = .45, ηp

2 = .02, 95% CI [−0.041, 0.019].
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changes in mean hippocampal activation in response to
the retrieval cue, but rather are the result of differences
in the distributed patterns of activation across hippocam-
pal voxels.

Classifier Validation Accuracy

To quantify the degree to which the target category was
reinstated during the delay period, we used the category
localizer to train an MVPA classifier to identify patterns of
activity associated with face and scene processing in the
VTC and parietal cortex fROIs (see Figure 3A). Ensuring
that theMVPA classifier could accurately detect when par-
ticipants were viewing faces and scenes in the category
localizer task was a necessary first step before testing

our key question, which was whether face and scene pat-
terns were reinstated during the recall task (Figure 1B).
Cross-validation performance was significantly above
chance levels (chance = 0.5; VTC: M = 0.97, SD = 0.02,
t(51) = 136.77, p < .001, d = 18.97, 95% CI [0.46, 0.48],
all participants above chance: ps < 1.50× 10−15; parietal:
M = 0.85, SD = 0.08, t(51) = 32.62, p < .001, d = 4.52,
95% CI [0.33, 0.37], all participants significantly above
chance: ps < 7.70 × 10−05) and did not differ as a func-
tion of age group (VTC: t(50) = 1.36, p = .18, d = 0.38,
95% CI [−0.004, 0.023]; parietal: t(50) = 1.36, p= .18,
d = 0.38, 95% CI [−0.014, 0.072]). Together, this pat-
tern of results suggests that face and scene patterns
were discriminable for each participant and age group
in each fROI.

Figure A2. Whole-brain RSA cue integration/differentiation searchlight results. (A) Regions showing a main effect of Differentiation, either across the
full sample (yellow) or only in children (purple) when the cluster identified in the full sample was interrogated in each age group separately (as in
Figure 2C–D). (B) Regions showing developmental differences in differentiation (purple) and integration (pink), which were evidenced in children
but not adults (child > adult). (C) Regions showing an interaction between Coding Scheme and Age Group (teal), such that adults showed significant
integration but children show significant differentiation in the same voxels simultaneously. For (A–C), clusters displayed on the 1-mm MNI template
brain. See also Appendix Figure A3 and Appendix Table A2.
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Figure A3. Neural patterns extracted from whole-brain RSA searchlight regions that showed significant developmental differences. We compared the
similarity of fMRI patterns for related as compared with unrelated objects across trials in regions for which there was an age-related difference in
differentiation (related < unrelated) or integration (related > unrelated; from Appendix Figure A2 and Appendix Table A2). Box plots depict regions
for which, when we tested effects within each age group separately, we found significant (A) differentiation or (B) integration within at least one
group (here, children), or (C) significant but opposite coding schemes between age groups (here, integration in adults but differentiation in
children). For (A–C), plots feature pairwise similarity values averaged across object cues that were related or unrelated, separately for participants
within each age group (n = 52; 27 children, 25 adults). Box plots depict the median (middle line), 25th and 75th percentiles (box), and the largest
individual values no greater than the 5th and 95th percentiles (whiskers). Dots reflect individual participant means, with dots extending beyond the
whiskers reflecting outliers, defined as values that were 1.5 times greater than the IQR. Asterisks reflect a significant related/unrelated difference
within an age group at a threshold of *p < .05 or **p < .001. Tensor product symbols indicate a significant interaction between Age Group and
Related/Unrelated Conditions (marked here simply for clarity).
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Figure A4. Children and adults show category reinstatement using an
RSA approach. RSA was implemented at the level of the full category-
selective fROIs (see Figure 3A). For each scanned recall trial, we
correlated fMRI activation patterns from the 9-sec delay period with
viewing of the same category during a pre-exposure item perception
localizer (same-category), which was compared with viewing of items
from a different visual category (different-category baseline). For each
participant, we computed a single category reinstatement index by
averaging the mean same category − different category similarity
difference across recall trials. (A) VTC and (B) parietal cortex category
reinstatement. A reinstatement index reliably above 0 (i.e., the black
dashed line) indicates significant target category evidence. Box plots
depict the median (middle line), 25th and 75th percentiles (box), and
the largest individual values no greater than the 5th and 95th
percentiles (whiskers). Dots reflect individual participant means; n =
52 per plot (27 children; 25 adults), with dots extending beyond the
whiskers reflecting outliers, defined as values that were 1.5 times
greater than the IQR. Asterisks above each box reflect a significant
within-group effect at a one-tailed threshold of p < .05 (*) or p < .001
(**), whereas asterisks between bars reflect a significant between-group
effect at a two-tailed threshold of **p < .001 or that are nonsignificant
(ns).
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Figure A5. Whole-brain RSA item reinstatement searchlight results. To complement the main fROIs item reinstatement analyses (Figure 4B), we
searched for voxels that exhibited significant item reinstatement at the whole-brain level, testing for this effect within the child (pink) and adult
(orange) groups separately (i.e., child > 0; adult > 0). (A) Regions showing significant item reinstatement at the whole-brain level. (B–C) Regions
showing significant item reinstatement when they were small-volume corrected within the fROIs in (B) VTC and (C) parietal cortex. For (A–C), clusters
displayed on the 1-mm MNI template brain. See also Appendix Table A3 and Appendix Figure A6 for corresponding results in the hippocampus.

Varga et al. 885

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/37/4/853/2497211/jocn_a_02299.pdf by U
N

IVER
SITY O

F TEXAS AT AU
STIN

 user on 28 April 2025



Figure A6. Children and adults reinstate target items in different
subregions of the hippocampus. Results of item reinstatement
RSA approach (Figure 4A; see also Appendix Table A3 and
Appendix Figure A5), which was implemented at the individual voxel
level via separate searchlight analyses in children (child > 0) and adults
(adult > 0). For each participant and voxel, we computed a single-item
reinstatement index by averaging the mean same item − different item
similarity difference across recall trials. We observed that children
reinstated specific memory associates in posterior hippocampus
(x, y, z = −18.7, −37.5, −0.67), whereas adults exhibited specific
item representations in anterior hippocampus (x, y, z = 28.3, −20.7,
−17.2; Figure 4C). This mirrors the general pattern that has been
observed previously in terms of locus of univariate activation shifting
from posterior to anterior hippocampus across development during
associative retrieval (DeMaster & Ghetti, 2013). These results thus
converge with the view that memory processes are differently
distributed in the immature hippocampus (DeMaster & Ghetti, 2013;
Ghetti & Bunge, 2012). By identifying the specific parts of the
hippocampus associated with organization of related memories
(Figure 2B and 2C) from those involved in the reinstatement of specific
memory features here, we build on this proposal, showing that the early
hippocampus prioritizes memory specificity, through disambiguating
similar events via differentiation while simultaneously retrieving item-
specific traces in posterior regions. Significant item reinstatement
clusters are displayed on the 1-mm MNI template brain. Clusters were
identified on a whole-brain template (see Appendix Table A3 and
Appendix Figure A5 for additional regions) and are significant after
small-volume correction for multiple comparisons within anatomical
hippocampus.
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Figure A7. Reinstatement generally increased across the delay in children and adults. (A) At the category level, reinstatement in VTC and parietal
cortex significantly increased from the first to second half of the delay for children (VTC: p < .001; parietal: p < .001) and adults (VTC: p < .001;
parietal: p = .001). Moreover, category-level reinstatement was significant (i.e., above 0) in both the first and second halves of the delay in VTC for
both children and adults ( ps ≤ .001) and in parietal for adults ( ps < .03). In contrast, for children, parietal reinstatement was significant in the
second half ( p < .001) but not the first half ( p = .26) of the delay. Moreover, age group differences were observed in the first half of the delay (at
trend or significant levels; VTC: t(50) = 2.04, p= .047, d= 0.57, 95% CI [0.003, 0.428]; parietal: t(50) = 1.71, p= .09, d= 0.47, 95% CI [−0.06, 0.69])
but not during the second half of the delay (VTC: t(50) = .77, p = .44, d = 0.22, 95% CI [−0.16, 0.36]; parietal: t(50) = .39, p = .70, d = 0.11, 95%
CI [−0.26, 0.38]). These results suggest that reinstatement increased across the delay, with children being slower to reinstate memories. By the end
of the delay, age differences were largely eliminated. (B) Item reinstatement did not significantly differ between the first and second halves of the
delay in either children or adults ( ps > .51). Moreover, children and adults did not differ from one another in the second half (all jts(50)j < 0.89, all
ps > .37), nor in the first half (all jts(50)j < 0.54, all ps > .59) of the delay. However, considering reinstatement within each group separately by half
revealed that although adults showed significant item reinstatement in both the first ( p = .02) and second ( p = .006) halves of the delay in VTC,
children showed a trend for this effect only during the second half ( p = .06; not the first: p = .16). Item reinstatement was not significant in either
delay interval or at either age in parietal cortex (ts < 1.19; ps > .12). For (A–B), asterisks above each box reflect a significant within-group effect at a
one-tailed threshold of p < .05 (*) or p ≤ .001 (**), whereas asterisks between boxes reflect a significant between-group effect at a two-tailed
threshold of p < .05 (*), p < .001 (**), or that are at trend (∼) or nonsignificant (ns) levels.
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Figure A8. Reinstatement during the second half of the delay was behaviorally significant in children and adults. Having found that generally
reinstatement was stronger toward the end of the delay (Appendix Figure A7), we were additionally curious as to whether this end-of-delay reinstatement
would be related to behavior. Rerunning our mixed-effects analyses (Figure 5A) and DDMs (Figure 5B) separately considering reinstatement
evidence restricted to the second half of the delay period replicated our main brain–behavior results. Specifically, (A) more evidence for category
reinstatement in VTC (χ1

2 = 5.65, p = .03) and a trend for item reinstatement in parietal cortex (χ1
2 = 3.58, p = .06) during the second half of

the delay was related to more accurate responses for children; the same was not true for the first-half reactivation values ( ps > .17; not depicted).
Here, significant predictors are displayed in separate plots for visualization purposes only, as all predictors (see Methods section) were included
in a single statistical model. All predictors were scaled and centered within participants to remove participant-specific effects. For both plots, n = 52
(27 children; 25 adults); age group was modeled as a main effect. (B) In addition, evidence of item reinstatement in parietal cortex during the second
half of the delay period was related to response speed on match trials in adults ( p= .03); the same was not true for the first-half reinstatement values
( ps > .19). Notably, we did not find a significant association for item reinstatement in parietal or category reinstatement in VTC with response speed
during either half of the delay interval in children ( ps > .28; first half of delay not depicted). Here, the VTC category and parietal cortex item
reinstatement indices were entered into four separate DDMs of response probability and speed, one each for each delay half (first vs. second) that
was further separated by children and adults. The lines represent 95% confidence intervals of the 2000 posterior parameter estimates (one-tailed),
with circles representing the mean of the posterior parameter distributions. Statistical significance was determined by calculating the proportion of
samples that were less than 0, equivalent to a one-tailed test.
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Table A1. Mean and Range of Number of Correct Trials for Final Learning, Scanned Recall, and for the Overall Neural Analyses after
Accounting for Learning and Scanned Recall, Separately for Each Age Group

Learning/Retrieval Scanned Recall Overall

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Child 34.67 (1.07) 33–36 30.96 (3.26) 25–35 29.96 (2.90) 25–35

Adult 35.68 (0.69) 33–36 35.32 (0.95) 33–36 35.08 (1.32) 31–36

The minimum number of trials represented in the table (25) corresponds with the behavioral threshold for above-chance (0.5) performance on
scanned recall, based on a Binomial Test ( p < .05; two-tailed).

Table A2. Whole-brain RSA Cue Differentiation/Integration Searchlight Results

Region Hemisphere N vox t x y z

Differentiation Main Effect

Cuneusa R 164 1.84 13 −81 39

Anterior parahippocampal gyruse L 120 2.37 −29 −5 −41

Insula cortexa R 118 3.51 34 −7 3

Subgenual anterior cingulate cortexa L 99 3.54 −6 6 −9

Adult > Child

None – – – – – –

Child > Adult

Posterior cingulate/precuneusc R 568 2.91 8 −43 6

SPL/cingulate gyrusc R 482 1.54 31 −34 57

Lateral occipital cortexa R 124 2.77 56 −63 1

Integration Main Effect

None – – – – – –

Adult > Child

Posterior cingulate/precuneusd R 568 2.91 8 −43 6

SPL/cingulate gyrusd R 482 1.54 31 −34 57

mPFCb L 188 4.14 −15 45 −4

Child > Adult

Caudate (head)c L 142 3.61 −11 21 3

Regions reflect clusters of voxels that survived cluster correction. For clusters showing a significant age group difference in coding scheme, effects
were considered significant if cue differentiation/integration was reliable at the within-group level in the group that showed the enhanced pattern.
Values (x, y, z) reflect cluster center of gravity (COG). Two millimeter isotropic voxels. MNI coordinates rounded to the nearest millimeter. Age
difference patterns within clusters that showed a main effect or age group difference. See also Appendix Figures A2 and A3 for corresponding whole-
brain visualizations and within-group plots, respectively.

a Differentiation in children, null pattern in adults.

b Integration in adults, null pattern in children.

c Integration in children, null pattern in adults.

d Integration in adults, differentiation in children.

e Trend for differentiation in both groups ( ps ≤ .07).
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