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The hippocampus is a complex brain structure composed of subfields that each have distinct cellular organizations. While the volume
of hippocampal subfields displays age-related changes that have been associated with inference and memory functions, the degree
to which the cellular organization within each subfield is related to these functions throughout development is not well understood.
We employed an explicit model testing approach to characterize the development of tissue microstructure and its relationship to
performance on 2 inference tasks, one that required memory (memory-based inference) and one that required only perceptually
available information (perception-based inference). We found that each subfield had a unique relationship with age in terms of its
cellular organization. While the subiculum (SUB) displayed a linear relationship with age, the dentate gyrus (DG), cornu ammonis field
1 (CA1), and cornu ammonis subfields 2 and 3 (combined; CA2/3) displayed nonlinear trajectories that interacted with sex in CA2/3. We
found that the DG was related to memory-based inference performance and that the SUB was related to perception-based inference;
neither relationship interacted with age. Results are consistent with the idea that cellular organization within hippocampal subfields
might undergo distinct developmental trajectories that support inference and memory performance throughout development.
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Introduction
The hippocampus is a complex brain structure routinely found
to be associated with memory throughout the lifespan (Scoville
and Milner 1957; Scahill et al. 2003; Lister and Barnes 2009;
Hirshhorn et al. 2012; Zeithamova et al. 2012; Barron et al. 2013;
Schlichting et al. 2014; Venkatesh et al. 2020). The structure of
the hippocampus contains distinct areas, called subfields, that
are distinguishable from one another based on the properties
and organization of the cells within each subfield (Manns and
Eichenbaum 2006; Lavenex et al. 2007), anatomical differences
that are perhaps related to subfield-specific gene expression (Dat-
son et al. 2004; Thompson et al. 2008). Most anatomical stud-
ies relating hippocampal subfields to memory throughout the
human lifespan have indexed the cellular properties of subfields
by measuring their volumes (Lee et al. 2014; Pereira et al. 2014;
Riggins et al. 2015; Daugherty et al. 2017; Schlichting et al. 2017).
Diffusion imaging provides more specific measures of cellular
properties than volume that can index changes in the orienta-
tion and density of neurons within a particular subfield (Cal-
low et al. 2020). Yet, the developmental trajectories of diffusion-
derived metrics of cellular organization in hippocampal subfields
and their relationships to memory throughout the lifespan are
unknown. Here, we used diffusion imaging to characterize the
relationship between subfield microstructure and age as well as
the relationship between subfield microstructure and memory
through middle childhood and young adulthood.

The volume of the hippocampus and its subfields changes
throughout the lifespan (Lee et al. 2014; Pereira et al. 2014;

Riggins et al. 2015; Daugherty et al. 2017; Schlichting et al. 2017). In
childhood, hippocampal volume displays clear age-related
increases (Hamer and Gerig 2008) with sex-specific trends (Giedd
et al. 1996; Ostby et al. 2009). However, there is less consensus
on the trajectory of hippocampal volumes in adolescence and
young adulthood with some studies reporting increases, others
reporting decreases, and still others reporting no change (Lee et al.
2017). Measuring age-related changes in the volume of the entire
hippocampus may mask underlying trends in its anatomically
distinct subfields (Fig. 1A). Indeed, studies that investigated the
development of particular hippocampal subfields, as opposed
to differences across the entire hippocampus, revealed that
the volumes of each subfield undergo distinct developmental
trajectories from childhood through young adulthood (Lee et al.
2014, 2017; Daugherty et al. 2017; Tamnes et al. 2018). While
cornu ammonis field 1 (CA1) volume displays a nonlinear inverted
U-shaped trajectory, cornu ammonis subfields 2 and 3 (CA2/3) and
dentate gyrus (DG) volumes display linear downward trajectories,
and subiculum (SUB) volume displays a more complex trajectory
with an early peak and a late valley. Thus, the hippocampal
subfield volumes each have distinct developmental trajectories,
suggesting that the nature of their cellular changes might also be
distinct.

An emerging body of work is using diffusion imaging to provide
information about the development of cellular organization
within the hippocampus and its relationship to memory.
Diffusion-derived metrics of the hippocampus have developmen-
tal trajectories and behavioral correlates that are independent
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Fig. 1. Hippocampal subfields and behavioral tasks. A) Hippocampal subfields. The hippocampus was segmented into 4 subfields: CA1 (blue), CA2/3
(pink), DG (purple), and SUB (green). B) Memory-based inference. In the memory-based matching and inference tasks, participants learned pairs of
objects and were later required to select the object from an array of 3 objects that they learned with a target object (M matching) and to select the
object from an array of 3 objects that should go with the target object based on a shared feature (M inference). C) Perception-based inference. In the
perception-based matching and inference tasks, participants were asked to indicate whether or not the target set of balls (emphasized here with a
circle) was a valid pair based on the other pairs of balls present on the screen (P matching) and based on a shared feature (P inference). Images A and B
were adapted from Schlichting et al. (2017); image C was adapted from Wendelken and Bunge (2010). CA1 = cornu ammonis field 1, CA2/3 = cornu ammonis
fields 2 and 3 combined, DG = dentate gyrus, SUB = subiculum, a = anterior; P = posterior.

from their volumes (Lee et al. 2014; Pereira et al. 2014; Wolf
et al. 2015; Callow et al. 2020; Langnes et al. 2020). For
example, mean diffusivity (MD), an index of cellular density
(Basser et al. 1994; Pierpaoli and Basser 1996; Assaf and Pasternak
2008; Le Bihan 2014), within the hippocampus decreased from
4 to 13 years of age (Mah et al. 2017; Callow et al. 2020) and
was related to performance on a source memory task (Callow
et al. 2020), even after controlling for hippocampal volume. In a
lifespan study of anterior and posterior hippocampal regions,
results indicated different developmental trajectories for MD
and volume, with region-specific trends in MD and age-related
relationships between region MD and recall memory (Langnes
et al. 2020). Investigations of diffusion metrics in hippocampal
subfields in healthy, non-geriatric populations are still rare to non-
existent. Consequently, the developmental trajectories of cellular
organization within subfields and their relationships to memory
development are nearly entirely based on volume measurements.

Evidence from mouse models suggests that measuring frac-
tional anisotropy (FA), a diffusion-derived metric, may provide
important information about the cellular organization within the
hippocampus. First, histological work revealed that hippocampal
subfields have characteristic fiber orientations. The predominant
orientation of diffusion is dorsal-ventral in the DG, rostral-caudal
in the CA3 subfield, and either dorsal-ventral or rostral-caudal
depending on location within the CA1 subfield (Sierra et al. 2015).
Second, experience-induced changes in fiber orientation within
subfields can be captured using diffusion-derived estimates of
FA. Epileptic injury resulted in an increase in the number of
fibers with similar orientations (i.e. a move toward more cellular
organization) in the DG subfield as well as 2 subareas of the
CA3 subfields, which was consistent with an observed increase
in FA (Sierra et al. 2015; Salo et al. 2017). Third, experience-
dependent changes in cellular fiber orientations (indexed by FA)
can occur within hippocampal subfields with little to no changes
in neuronal density (indexed by MD), suggesting that FA and MD
are indexing different tissue properties. While epileptic injury
resulted in an increase in FA within DG and CA3bc, there was no
observable change in MD in either subfield (Sierra et al. 2015). Fur-
thermore, human magnetic resonance imaging (MRI) studies have
demonstrated the feasibility and utility of using FA to measure
cellular changes within human hippocampal subfields. FA can
be measured reliably in the human hippocampus using diffusion
imaging (Müller et al. 2006) and provides information about cel-
lular organization that is independent of MD (Shereen et al. 2011;

Treit et al. 2018). FA of the entire hippocampus changes with age
(Carlesimo et al. 2010; Venkatesh et al. 2020) and with spatial
navigation learning in adult humans (Iaria et al. 2008), suggesting
that, as in mouse models, changes in the FA of hippocampal
subfields may be related to behavior and experience.

Memory allows us to not only reflect upon past experiences,
but also to connect related memories in order to derive new
knowledge—a faculty termed memory integration (Schlichting
and Preston 2015; Morton et al. 2017). Memory integration is
thought to underlie successful associative inference because new
memories are encoded in the context of prior memories. As
such, encoded neural representations include both the directly
experienced and inferential associations, and would thereby facil-
itate successful inference. However, memory integration may not
support successful inference in childhood (Bauer and San 2010;
Bauer et al. 2020; Schlichting et al. 2022). Rather than integrating
memories during encoding, children may encode memories sepa-
rately such that successful inference in childhood would require
successful memory encoding and successful reasoning about the
relationships among separate memory traces. Taken together, the
neural mechanisms supporting successful inference in adulthood
may be qualitatively different from the neural mechanisms sup-
porting successful inference in childhood.

Nearly all studies investigating memory integration in the hip-
pocampus have used associative inference paradigms. Associative
inference paradigms require participants to learn 2 independent
associations among 3 objects, such as A goes with B and B goes
with C, and they must later infer that A goes with C (Schlichting
et al. 2017). Associative inference paradigms, therefore, require
successful association learning of the 2 pairs (i.e. memory encod-
ing) and also successful inference about the unshared features
based on a shared feature (i.e. reasoning about the relationships
among separate memory encodings). Because successful infer-
ence in childhood may rely on separate processing for memory
encoding and reasoning about the encoded memories, it is impor-
tant to use not only standard associative inference paradigms
that include memory encoding and reasoning requirements but
also “perception-based” inference paradigms to assess reasoning
directly (Brainerd and Reyna 1992; Crone et al. 2009). Perception-
based inference paradigms require participants to make the same
inference as associative inference paradigms, that A goes with
C, but the inference does not require long-term memory of the
2 directly experienced pairs because AB and BC are both visible
during inference (Wendelken and Bunge 2010). Comparing the
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performance on these 2 tasks can isolate the memory-based
component of inference, given that the reasoning component
should logically be similar between associative inference tasks
and perception-based inference tasks.

The present work characterizes the development of the
tissue microstructure of hippocampal subfields and provides
information concerning the relationship of subfield tissue
properties to memory and inference. We used diffusion imaging
to assess the relationship between age and hippocampal subfields
based on their tissue microstructure. More specifically, we
employed an explicit model testing paradigm to model the
relationship between the tissue microstructure of subfields CA1,
CA2/3, DG, and SUB and age from 6 to 30 years. We then performed
separate regressions to predict performance on 2 inference
tasks using subfield microstructure, one that required memory
(i.e. associative inference, hereafter referred to as memory-
based inference; Fig. 1B) and one did not require memory (i.e.
perception-based inference; Fig. 1C). For both regressions, we
included performance on a control task. For memory-based
inference, the control task was performance on memory for
directly experienced pairs. For perception-based inference, the
control task was essentially a matching task for associations.
This approach allowed us to disentangle relationships between
subfields and memory and inference throughout development. If
a relationship exists between the tissue properties of a given
hippocampal subfield and performance on the memory- but
not perception-based inference task, it would be consistent
with the notion that the cellular organization of that subfield
supports memory integration processing (because memory
integration is not necessary for perception-based reasoning;
although see Wimmer and Shohamy 2012; Munnelly and
Dymond 2014). Such a subfield may facilitate memory-based
inference by connecting directly experienced pairs in memory,
rather than through a separate reasoning-based inference
process.

Materials and methods
Participants
A total of 90 participants were recruited for this study, originally
reported in Schlichting et al. (2017): 31 children (ages 6–11 years),
25 adolescents (ages 12–17 years), and 34 adults (ages 18–30).
Only participants that met inclusion several exclusion criteria
were used for analysis: (1) absence of psychiatric conditions, i.e.
Child Behavioral Check List in children (CBCL; Achenbach and
Edelbrock 1991) and Symptom Checklist 90-Revised in adults
(SCL-90-R; Derogatis 1977) in the normal range and (2) average
intelligence, i.e. Weschler Abbreviated Scale of Intelligence, Sec-
ond Edition (Wechsler 2018), full Scale IQ composite score above
2 standard deviations below the mean of a normative sample,
resulting in the removal of 1 child, 1 adolescent, and 10 adults,
and a remaining sample size of 78 participants (30 children, 24
adolescents, 24 adults). All procedures were conducted under the
approval of the Institutional Review Board at the University of
Texas at Austin. Parental consent was obtained for participants
under 18 years of age. Participants received compensation for
their participation.

Hippocampal segmentations for a total of 62 of these
participants were acquired from https://osf.io/hrv9n; only
participants with available hippocampal subfield segmentations
were included in the brain and brain-behavior analyses, leaving
62 participants (22 children, 21 adolescents, 19 adults). Of
the 62 participants, an additional 6 participants (1 child, 2

adolescents, 3 adults) were removed due to an absence of one
of the required image types (T1, T2, and diffusion-weighted
images) or substandard data quality, resulting in 56 participants:
21 children (M = 8.76 years, SD = 1.73 years, range = [6, 11], 8F, 13M),
19 adolescents (M = 13.79 years, SD = 1.65 years, range = [12, 17], 9F,
10M), and 16 adults (M = 23.50 years, SD = 3.31 years, range = [18,
28], 9F, 7M).

Outlier removal for tissue microstructural analyses
Diffusion data from individual participants were removed if their
framewise displacement (FD) for the diffusion scan was greater
than 1 mm or if their data were determined to be of low signal-
to-noise ratio (SNR). This resulted in the removal of 2 partici-
pants (Supplementary Fig. 1). There were no participants that
were removed based on low SNR (Supplementary Fig. 2). We also
identified and removed outliers for each region of interest (ROI)
according to statistical criteria by applying the box plot rule to
the raw residuals and robust weights (Frigge et al. 1989) for each
of the models tested (see Table 2); these data points were removed
selectively for particular ROIs. The final participant counts for
each model are provided in Table 2 and individual participant data
are displayed for each model in Fig. 2.

Outlier removal for behavioral analyses
Behavioral data from individual tasks performed by a participant
were removed if they did not understand the task or were below
chance on accuracy based on a binomial test for accuracy. The
final participant counts are provided for each behavioral mea-
sure in Fig. 3 (Memory-based inference: M Matching and M Infer-
ence) and Fig. 4 (Perception-based inference: P Matching and P
Inference).

Outlier removal for brain-behavior analyses
We identified and removed multivariate outliers for each model.
Multivariate outliers were identified using the box plot rule
applied to the raw residuals as well as the robust weights (Frigge
et al. 1989). The final participant counts are provided for each
model along with the statistical results.

Procedure
Participants completed 2 visits. During the first visit, partici-
pants completed assessments that screened for psychiatric condi-
tions, i.e., Child Behavioral Check List in children (CBCL); (Achen-
bach and Edelbrock 1991) and SCL-90-R (Derogatis 1977), and
potential learning disorders, i.e. Weschler Abbreviated Scale of
Intelligence, Second Edition (WASI-II; Wechsler 2018), and were
familiarized with the MRI environment in a short session in a
mock MRI scanner. Participants also completed a battery of tasks
designed to assess associative inference and related abilities,
always completed in this order: associative inference (Preston
et al. 2004; Schlichting and Preston 2015; Schlichting et al. 2017),
Iowa Gambling (Bechara et al. 1994), statistical learning (Fiser
and Aslin 2001; Schapiro et al. 2016; Schlichting et al. 2017),
relational reasoning (Crone et al. 2009), and relational integration
(Wendelken and Bunge 2010). The current work focuses on the
associative inference and relational integration task because both
tasks assess inference and are well matched in terms of task
demands. The associative inference task assesses inference when
memory is required (i.e. memory-based inference) whereas the
relational integration task assesses inference when memory is not
required (i.e. perception-based inference).
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Fig. 2. Different relationships with age for each subfield. Displayed are the best fitting models for the relationship between subfield fractional anisotropy
(FA), age, and sex, selected based on AICc. A) Cornu ammonis field 1 (CA1). CA1 displayed a nonlinear, inverted U-shaped relationship with age. B) Cornu
ammonis fields 2 and 3 (CA2/3). CA2/3 displayed a nonlinear interaction between sex and age, such that the nonlinear effect of age depended on sex.
Males displayed a U-shaped relationship while females displayed the opposite. C) Dentate gyrus (DG). The DG displayed a nonlinear relationship with
age, such that FA decreased with age. D) Subiculum (SUB). The SUB displayed a linear relationship with age, such that FA decreased with age.

Fig. 3. Memory-based inference: Matching and Inference. A) Accuracy. Performance was above chance on both tasks; chance performance was 33%
(dashed line). Performance on the matching task was greater than performance on the inference task within the child and adolescent age groups. The
difference between matching and inference performance was greater in children compared to adolescents. Note: This is a replication of Schlichting
et al. (2017), Fig. 4A. B) Reaction time. Reaction time was slower on the inference task than on the matching task across age groups (top) and faster in
adolescents than in children and adults across tasks (bottom). Error bars are 95% confidence intervals. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Behavioral assessments
Memory-based inference: matching and inference
Participants completed an inference task that required memory.
This task has been described in detail in Schlichting et al. (2017)
using stimuli that have also been described in (Schlichting and
Preston 2015). A portion of the stimuli were from Hsu et al. (2014).

The task was a modified version of the task described in Preston
et al. (2004).

In brief, participants were presented with pairs of objects dur-
ing a learning phase followed by a testing phase (Fig. 1B). The 30
pairs were split into 2 types of pairs: AB pairs and BC pairs. The B
object was the same object for each pair type. During the learning
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Fig. 4. Perception-based inference: Matching and Inference. A) Accuracy.
Performance was above chance on both tasks; chance performance was
50% (dashed line). Performance on the inference task was less than
performance on the matching task. B) Reaction time. On the matching
task, children responded slower than adolescents and adults. Error bars
are 95% confidence intervals. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

phase, participants were encouraged to encode the object pairs
by creating stories, either visual or verbal, but were told neither
that the B object linked A and C objects nor that they would be
asked to make an inference judgment. During the testing phase,
participants were asked to complete a 3-alternative forced-choice
(3-AFC) task, self-paced, in which they were presented with one
of the objects that they had learned and asked to identify the
object that was next to it during learning, the Matching task.
The cue object was presented at the top and the 3 choices were
presented below. Distractor objects were objects that they had
learned but that did not go with the cue object. Trial order was
pseudo-randomized but held constant across participants and
no feedback was provided. The learning and test phases were
repeated 4 times each. After the 4 blocks of learning/testing,
participants completed the Inference task. The Inference task was
only completed once. During Inference, participants were alerted
that A and C objects were linked by B items and asked to complete
another self-paced 3-AFC test in which they were presented with
the C object at the top and asked to select the A object from 3
objects displayed below it. All tasks were all completed using a
computer and responses were provided with key presses. We will
refer to the memory-based tasks as M Matching and M Inference.

Perception-based inference: matching and inference
Participants completed an inference task that did not require
memory. This task was modified from the task described in
Wendelken and Bunge (2010). Note that the full set of tasks
described in Wendelken and Bunge (2010) includes General
Direct, General Inference, Specific Direct, and Specific Inference;
however, we use only the General Direct (Matching) and General
Inference (Inference) in the current work because it is so well
matched to the memory-based M Matching and M Inference tasks
(described above; Fig. 1B). In brief, participants were presented
with 4 pairs of colored balls, e.g. red–blue, green–purple, yellow–
white, and blue–orange, and were presented simultaneously
with a fifth set of colored balls, the target pair, e.g. red–orange,
and asked to make a timed 2-alternative forced-choice (2-AFC)
judgment about the validity of the fifth set of colored balls given
the associations provided in the 4 pairs (Fig. 1C). For the Matching
task, participants were able to determine the validity of the target
pair by finding if that pair existed in any of the 4 pairs of colored
balls. For the Inference task, participants were required to make
an inference using 2 of the 4 pairs of colored balls presented on
the screen. If, for example, a red–blue pair and a blue–orange
pair exist among the 4 pairs of colored balls, then the target pair
of red–orange would be considered a valid pair. Trial order was

pseudo-randomized but held constant across participants and no
feedback was given. We will refer to the perception-based tasks
as P Matching and P Inference.

MRI data acquisition and analyses
MRI data acquisition
A T1-weighted 3D MPRAGE and at least 2 oblique coronal
T2-weighted images were acquired for each participant on a
3.0 T Siemens Skyra MRI. The T1-weighted image included
256 × 256 × 192 1 mm3 voxels. The T2-weighted image was an
oblique coronal acquired perpendicular to the main axis of the
hippocampal complex: TR = 13,150 ms, TE 82 ms, 512 × 60 × 512
matrix, 0.4 × 0.4 mm in-plane resolution, 1.5 mm thru-plane
resolution, 60 slices, and no gap. If visual inspection of 1 of the
2 T2-weighted images indicated motion artifacts, a third T2-
weighted image was collected. Two T2-weighted images were
coregistered using ANTS (Avants et al. 2011) and averaged to
produce 1 T2-weighted image for each participant. Diffusion and
T2-weighted images were aligned to the T1-weighted image.

Diffusion data were collected using single-shot spin
echo simultaneous multi-slice EPI (transverse orientation,
TE = 114.00 ms, TR = 7,517 ms, flip angle = 90 degrees, isotropic
1.5 mm resolution, to enable estimation of diffusion metrics
within specific hippocampal subfields; FOV = LR 220 mm ×
227 mm × 134 mm; multi-band acceleration factor = 2, inter-
leaved). Diffusion data were collected at 2 diffusion gradient
strengths, with 64 diffusion directions at b = 1,000 s/mm2, as well
as 1 image at b = 0 s/mm2, once in the AP fold-over direction (i.e.
dwi-AP).

Anatomical (T1w) and Diffusion (dMRI) processing
All diffusion preprocessing steps were performed using the rec-
ommended MRtrix3 preprocessing steps (Ades-Aron et al. 2018)
as implemented in the MRtrix3 Preprocess App on brainlife.io
(McPherson 2018). PCA denoising and Gibbs deringing procedures
were performed first. We then corrected for susceptibility- and
eddy current-induced distortions as well as inter-volume subject
motion by interfacing with FSL tools via the dwipreproc script.
The eddy current-corrected volumes were then corrected for bias
field and Rician noise. Finally, the preprocessed dMRI data were
aligned to each participant’s anatomical image using boundary-
based registration in FSL (Greve and Fischl 2009).

Identification of hippocampal subfields
Hippocampal subfields were identified by hand on each
participant’s mean coronal image as described in Schlichting et al.
(2017, 2019). Subfields examined included CA1 and CA2/3, DG, and
SUB. Each subfield was segmented along the entire long axis of the
hippocampus so that the microstructural measurements used in
our analyses would correspond to entire subfields. Subfield seg-
mentations included the head and body but not the tail because
segmentation in the posterior part of the hippocampus was not
reliable. For Supplementary analyses, we further considered each
subfield within head and body subregions, resulting in 8 ROIs for
the Supplementary analyses: CA1_head, CA1_body, CA2/3_head,
CA2/3_body, DG_head, DG_body, SUB_head, and SUB_body.

Microstructural measurements
We estimated fractional anisotropy (FA) and mean diffusivity
(MD) based on the tensor model (Basser et al. 1994) using the
FSL DTIFIT App on brainlife.io (brainlife.app.137). Values for each
microstructural measurement were extracted from hippocampal
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Table 1. Analysis steps.

Application GitHub repository Open Service DOI

SNR Calculation https://github.com/davhunt/app-snr_in_cc https://doi.org/10.25663/brainlife.app.120
dMRI Preprocessing https://github.com/brain-life/app-mrtrix3-preproc https://doi.org/10.25663/bl.app.68
FSL DTIFIT https://github.com/brainlife/app-fslDTIFIT https://doi.org/10.25663/brainlife.app.137
Extract diffusion metrics https://github.com/brainlife/app-extract-diffusion-metrics-rois https://doi.org/10.25663/brainlife.app.283

subfields using the Extract diffusion metrics inside ROIs (DTI) App
on brainlife.io (brainlife.app.283).

Data and software availability
Data, description of analyses, and web-links to the open source
code and open cloud services used in this study are listed in
Table 1 and can be viewed in their entirety here: https://doi.
org/10.25663/brainlife.pub.33. The raw data and hippocampal
segmentations were transferred to the referenced brainlife.io
project from the Open Science Framework: https://osf.io/hrv9n.
Customized code for statistical analyses is available here: https://
github.com/svincibo/devti_devHPCsubfields.

Statistical analyses
Modeling the relationship between age and subfield
microstructure
To determine the relationship between age and hippocampal
microstructure, we assessed the relationship between hippocam-
pal microstructure, age, and sex by testing 7 different models.
Models were tested for the tissue microstructure of each of the
subfields (i.e. CA1, CA2/3, DG, SUB), for a total of 28 models.
For each model, the dependent variable was always the mean
FA of voxels included in the ROI, collapsed across hemispheres.
Models included (1) ROI ∼ age, (2) ROI ∼ age2, (3) ROI ∼ sex, (4)
ROI ∼ sex + age, (5) ROI ∼ sex + age2, (6) ROI ∼ sex ∗ age, and (7)
ROI ∼ sex ∗ age2. We included sex in our models because subfield
volume has been shown to depend on sex (Tamnes et al. 2018).
Continuous variables were mean centered. We identified and
removed multivariate outliers for each model separately. Multi-
variate outliers were identified using the box plot rule applied
to the raw residuals as well as the robust weights (Frigge et al.
1989). We compared the 7 models for each ROI using the Akaike
Information Criterion corrected for sample size (AICc) to account
for the different numbers of predictors in each model (Hurvich
and Tsai 1991). All AICc values were negative and we report the
absolute values of AICc for clarity. Therefore, the model with the
highest AICc was selected as the winning model.

Supplementary analyses included testing a series of different
ROIs: hippocampal subregions (i.e. head, body, tail; instead of sub-
fields), hippocampal subfields within head and body subregions
(i.e. CA1_head, CA1_body, CA2/3_head, CA2/3_body, DG_head,
DG_body, SUB_head, SUB_body), and overall hippocampus. We
also tested MD rather than FA. We note that MD is commonly used
in subcortical gray matter regions as well as in the hippocampus
(Basser and Jones 2002).

Analysis of behavioral data
Each behavioral measure was analyzed separately using 2-way
repeated measures ANOVAs with 2 factors: Age and Task. Age
always had 3 levels: children, adolescents, and adults. Task always
had 2 levels. Task had 2 levels for the memory-based tasks,
Matching and Inference; Task had 2 levels for the perception-
based tasks, Matching and Inference. The dependent variable was
either accuracy or reaction time. Pearson correlations were used

to evaluate the presence of a speed–accuracy trade-off for each
task (Supplementary Fig. 3). One-sample t-tests were performed to
confirm that performance was above chance for each task within
each age group. Chance was 33% for the memory-based tasks and
50% for perception-based tasks.

Determining the relationships among inference, memory,
and the microstructure of hippocampal subfields
To determine the relationship between the tissue microstruc-
ture of hippocampal subfields and memory performance as a
function of age, we used multiple linear regression to assess
the degree to which task performance on each task could pre-
dict subfield microstructure. In order to compare memory-based
and non-memory based inference, we fit separate models for
each subfield ROI that included a memory-based (M Matching
and M Inference) and a non-memory-based task (P Matching
and P Inference). Given the degree of correlation between tasks
within the memory-based tasks and the non-memory-based tasks
(Supplementary Table 1), we conducted 2 separate regressions
for each ROI, one that included the matching tasks (M Match-
ing and P Matching) and a second that included the inference
tasks (M Inference and P Inference). We also included the model
parameters found in the prior analysis that best explained the
relationship between that subfield’s microstructure, age, and sex.
Finally, we included IQ as a covariate of no interest to account
for general intelligence, as in prior work (Schlichting et al. 2017).
While accuracy and reaction time for the final repetition on the
memory-based Matching task was evaluated in the behavioral
analyses estimating learning, we found that the high performance
on the final repetition of the memory-based Matching task left
the measurement with a low level of variability and, therefore,
elected to use the accuracy on the memory-based Matching task
averaged across all 4 repetitions, as in prior work (Schlichting
et al. 2017). Multivariate outliers were identified and removed
for each model separately. Multivariate outliers were identified
using the box plot rule applied to the raw residuals as well as
the robust weights (Frigge et al. 1989). Continuous variables were
mean centered. Models were considered significant with p <0.025,
after a Bonferroni correction for the 2 comparisons. Predictors
within a model were considered significant with p <0.05.

Statistical analyses for the repeated-measures ANOVAs that
were performed on the behavioral data were performed using
SPSS Statistics 27. All other statistical analyses were performed
using customized code written in Matlab R2021b v.9.11.0 (see Data
and Software Availability).

Results
Modeling the relationship between fractional
anisotropy and age: subfields demonstrate
different relationships with age
To identify developmental trends in tissue microstructure within
each hippocampal subfield, we segmented the hippocampus into
4 subfields (i.e. CA1, CA2/3, DG, SUB) and calculated the mean FA
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Table 2. Models tested for hippocampal subfield and age relationship.

Subfield Regression model N AICc Adj. R2 F P

CA1 CA1 ∼ age 54 219.35 0.019 2.00 0.163
CA1 ∼ age 2 54 221.31 0.152 5.76 0.006
CA1 ∼ sex 51 219.71 0.095 6.26 0.016
CA1 ∼ sex + age 52 218.16 0.058 2.57 0.087
CA1 ∼ sex + age2 55 221.32 0.107 3.15 0.033
CA1 ∼ sex ∗ age 54 217.25 0.081 1.92 0.139
CA1 ∼ sex ∗ age2 55 217.00 0.081 1.95 0.103

CA2/3 CA2/3 ∼ age 50 197.30 0.117 7.49 0.117
CA2/3 ∼ age2 51 196.62 0.114 4.20 0.021
CA2/3 ∼ sex 53 193.86 0.084 5.76 0.020
CA2/3 ∼ sex + age 49 201.37 0.277 10.20 0.0002
CA2/3 ∼ sex + age2 49 200.83 0.288 7.46 0.0004
CA2/3 ∼ sex ∗ age 49 198.99 0.260 6.64 0.0008
CA2/3 ∼ sex ∗ age2 49 203.16 0.371 6.66 0.0001

DG DG ∼ age 51 209.61 0.114 7.42 0.009
DG ∼ age 2 50 210.00 0.148 5.27 0.009
DG ∼ sex 51 205.87 −0.0202 0.012 0.913
DG ∼ sex + age 51 203.16 0.096 6.66 0.0001
DG ∼ sex + age2 50 207.64 0.130 3.44 0.024
DG ∼ sex ∗ age 51 205.05 0.077 2.39 0.081
DG ∼ sex ∗ age2 49 200.75 0.151 2.71 0.033

SUB SUB ∼ age 54 218.07 0.075 5.30 0.025
SUB ∼ age2 54 215.87 0.058 2.62 0.083
SUB ∼ sex 55 216.92 0.011 1.59 0.213
SUB ∼ sex + age 54 217.64 0.088 3.56 0.036
SUB ∼ sex + age2 54 215.47 0.073 2.39 0.080
SUB ∼ sex ∗ age 53 216.31 0.087 2.66 0.059
SUB ∼ sex ∗ age2 52 213.41 0.129 2.51 0.043

Best fit models are bolded, were selected on AICc, and are displayed in Fig. 2.

as a measure of tissue microstructure for each. We then applied
an explicit model testing approach to determine the best model
for the relationship between FA, age, and sex. In each model,
FA was entered as the response variable and age and sex were
entered as predictors in 1 of 7 possible configurations in order to
test both linear and nonlinear models as well as main effect and
interaction models. Pearson correlations among all variables are
presented in Supplementary Table 1. Results of the model testing
for each hippocampal subfield are displayed in Table 2.

FA in the CA1 and DG subfields were best modeled by a
nonlinear model that included only a quadratic term for age,
indicating a nonlinear main effect of age for both subfields
and no effect of sex. For CA1, the best model was CA1 ∼ age2,
AICc = 221.31, p = 0.006 (Fig. 2A). For DG, the best model was
DG ∼ age2, AICc = 210.00, p = 0.009 (Fig. 2C).

FA in the CA2/3 subfield was best modeled by a nonlinear
interaction model that included sex and age. The best model
was CA2/3 ∼ sex ∗ age2, AICc = 203.16, p = 0.0001, indicating the
presence of a nonlinear effect of age that differed between males
and females (Fig. 2B). For males, the nonlinear effect of age
was parabolic increase; for females, the effect was an inverted
U-shaped relationship (Fig. 2B, inset).

For SUB, the best model was SUB ∼ age, AICc = 218.07, p = 0.025,
indicating a linear main effect of age (Fig. 2D). As age increased,
FA decreased.

Of all the additional models tested in the Supplementary anal-
yses for the hippocampus and its subregions, we found no model
that fit the data better than the models tested using the subfields.
In fact, nearly all models were not significant. The only exception
was a simple linear model with FA in the head subregion as the
response variable and sex as the predictor variable, HEAD ∼ sex,
AICc = 255.03, p = 0.002. Results of these Supplementary analyses

can be found in Supplementary Table 2. Models tested with MD
as the dependent variable were similarly nonsignificant with
the exception of TAIL ∼ age, AICc = 105.41, p = 0.005, SUB ∼ age,
AICc = 121.91, p = 0.001. Results of the Supplementary analyses for
MD can be found in Supplementary Table 3 for hippocampal sub-
regions and in Supplementary Table 4 for hippocampal subfields.

Memory-based inference improves over
development
Memory-based inference: Matching and Inference
To investigate memory-based inference performance as a func-
tion of age, we performed a 2-way repeated-measures ANOVA
for Task (Matching, Inference) and Age Group (children, adoles-
cents, adults). The dependent variable was either accuracy or
reaction time. In addition, we used a one-sample t-test to ensure
that accuracy was above chance, i.e. greater than 33%. We note
that a prior study reported results of this analysis (Schlicht-
ing et al. 2017) and are reproduced in the current study that
uses an overlapping set of participants for the benefit of the
reader.

Accuracy

Results revealed a greater difference between performance on
the Matching task and the Inference task in children compared
to adolescents (Fig. 3A). All age groups performed above chance
on both tasks, all ps < 0.001. A 2-way repeated-measures ANOVA
for Age Group (children, adolescents, adults) and Task (Matching,
Inference) revealed a significant main effect of Age Group, F(2,
655) = 8.900, p = 3.83 × 10−4, a significant main effect of Task,
F(1, 65) = 41.311, p = 1.79 × 10−8, and a significant interaction, F(2,
65) = 4.388, p = 0.016. There was a significant difference among the
age groups on the Matching task, F(2, 67) = 6.418, p = 0.003, and a
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significant difference among age groups on the Inference task,
F(2, 67) = 8.594, p = 4.88 × 10−4. For the Matching task, adult and
adolescent performance were greater than child performance,
t(44) = 3.499, p = 0.001 and t(42) = 2.077, p = 0.044, respectively, and
there was no significant difference between adult and adolescent
performance, t(44) = 1.288, p = 0.216. For the Inference task, results
were similar; adult and adolescent performance were greater than
child performance, t(44) = 3.999, p = 2.39 × 10−4 and t(42) = 2.900,
p = 0.006, respectively, and there was no significant difference
between adult and adolescent performance, t(44) = 0.878, p = 0.385.
Performance on the Matching task was greater than performance
the Inference task in children, t(11) = 4.113, p = 0.002, and in
adolescents, t(16) = 2.319, p = 0.034, but not in adults, t(21) = 1.962,
p = 0.063. The difference between Matching performance and
Inference performance (i.e. the difference score between Matching
and Inference) was greater in children than in adolescents,
t(42) = 2.320, p = 0.025, and no different in adolescents than in
adults, t(44) = 0.365, p = 0.717.

Reaction time

Results demonstrated that responses were slower on the
Inference task than on the Matching task across age groups
and that adolescents responded faster than adults and children
across tasks (Fig. 3B). A 2-way repeated-measures ANOVA for
Age Group (children, adolescents, adults) and Task (Matching,
Inference) revealed a significant main effect of Age Group, F(2,
65) = 4.236, p = 0.019, and a main effect of Task, F(1, 65) = 117.057,
p = 3.54 × 10−16. The interaction did not reach significance, F(2,
65) = 1.1778, p = 0.177. Adolescents responded faster than children,
t(42) = 2.861, p = 0.007, and faster than adults, t(44) = 2.003,
p = 0.051, at trend level. The difference between children and
adults was not significant, t(44) = 1.155, p = 0.254. Responses were
faster on the Matching task compared to the Inference task,
t(67) = 10.779, p = 2.81 × 10−16.

Perception-based inference: Matching and Inference
To investigate perception-based inference performance as a func-
tion of age, we performed a 2-way repeated-measures ANOVA for
Task (Matching, Inference) and Age Group (children, adolescents,
adults). The dependent variable was either accuracy or reaction
time. In addition, we used a one-sample t-test to ensure that
accuracy was above chance, i.e. greater than 50%.

Accuracy

Results demonstrated that performance was greater on the P
Matching task than on the Inference task across age groups
(Fig. 4A). All age groups performed above chance on both Match-
ing and Inference tasks, all Ps < 0.001. A 2-way repeated-measures
ANOVA for Age Group (children, adolescents, adults) and Task
(Matching, Inference) revealed a significant main effect of Task,
F(1, 63) = 73.497, p = 3.57 × 10−12. Performance was greater on the
Matching task than on the Inference task. Neither the main
effect of Age Group, F(2, 63) = 2.791, p = 0.069, nor interaction, F(2,
63) = 0.918, p = 0.405, were significant.

Reaction time

Results demonstrated that children responded slower than
adolescents and adults on the Matching task but not on the
Inference task (Fig. 4B). A 2-way repeated-measures ANOVA for
Age Group (children, adolescents, adults) and Task (Matching,
Inference) revealed a significant main effect of Task, F(1,
63) = 316.511, p = 2.97 × 10−26, and a significant interaction, F(2,
63) = 4.746, p = 0.012. The main effect of Age Group was not

significant, F(2, 63) =1.091, p = 0.342. Responses were slower
in the Inference task than in the Matching task. There was a
significant difference among age groups for the Matching task,
F(2, 65) = 5.615, p = 0.006, that was not present for the Inference
task, F(2, 65) = 1.249, p = 0.294. On the Matching task, children
responded slower than both adolescents, t(42) = 2.370, p = 0.022,
and adults, t(40) = 2.739, p = 0.009, and there was no difference
between adolescents and adults, t(44) = 0.734, p = 0.467.

Microstructure of hippocampal subfields related
to associative inference
We assessed the relationship between the microstructure of hip-
pocampal subfields and inference behavior when memory was
required and when memory was not required. The goal was
to explore the extent to which the cellular organization within
hippocampal subfields might be related to inference behaviors by
manipulating the memory requirement during inference. Asso-
ciative inference requires memory and develops gradually, sug-
gesting that the cellular computations performed within hip-
pocampal subfields likely track memory-based inference ability
and not perception-based inference ability. We constructed a
separate regression model for each subfield that contained a
predictor for each task of interest. One model included predictors
for the inference tasks: M Inference and P Inference. The second
model included predictors for the matching tasks: M Matching
and P Matching. Both models included covariates of no interest,
including IQ and the specific sex and age predictors that explained
the most variance in subfield microstructure in the earlier analy-
ses (see Modeling to determine the relationship between age and
subfield microstructure: subfields demonstrate different relation-
ships with age). The response variable was always the mean
microstructural measurement (i.e. FA) for that subfield, averaged
over all voxels included in the ROI for that subfield.

Cornu ammonis field 1
Inference tasks
There was no statistically significant relationship between either
of the inference tasks and CA1 microstructure. Multiple linear
regression was used to test if performance on either of the infer-
ence tasks significantly predicted CA1 microstructure. The fitted
regression model was CA1 ∼ M Inference + P Inference + iq + age2,
with a final sample size of 54 after removing multivariate outliers.
The overall regression was statistically significant, R2 = 0.214, Adj.
R2 = 0.132, AICc = 215.98, F(5, 48) = 2.61, p = 0.036. Age significantly
predicted CA1 microstructure, β = −0.013, p = 0.004, as did age2,
β = 0.0004, p = 0.008. There were no other significant predictors, all
Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between CA1 microstructure
and task performance, CA1 ∼ M Inference∗age + P Inference∗age
+ iq, with a final sample size of 54 after removing multivariate
outliers. However, the overall regression was not statistically sig-
nificant, R2 = 0.077, Adj. R2 = 0.041, AICc = 209.44, F(6, 47) = 0.652,
p = 0.688, and there were no significant predictors, all Ps > 0.05.

Matching control tasks
Multiple linear regression was used to test if performance on any
of the matching tasks significantly predicted CA1 microstructure.
Performance on the P Matching task significantly predicted
CA1 microstructure (Fig. 5A), suggesting that more accurate
performance on perception-based pair matching was related to
greater directional coherence of cellular tissue within the CA1
subfield. The fitted regression model was CA1 ∼ M Matching + P
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Fig. 5. Relationship between subfield microstructure and associative inference performance. A) Perception-based matching: P Matching. P Matching
accuracy significantly predicted CA1 microstructure. B) Perception-based inference: P Inference. P Inference accuracy significantly predicted SUB
microstructure. C) Memory-based inference: M Inference. M Inference accuracy significantly predicted DG microstructure. Each plot describes the
relationship between the fitted response as a function of accuracy with the other predictor in the model averaged out.

Matching + iq + age2, with a final sample size of 53 after removing
multivariate outliers. The overall regression was trending towards
statistical significance, R2 = 0.223, Adj. R2 = 0.141, AICc = 217.05,
F(5, 47) = 2.70, p = 0.032. P Matching significantly predicted CA1
microstructure, β = 0.222, p = 0.044, as did age, β = −0.012, p = 0.014,
as did age2, β = 0.0003, p = 0.022. There were no other significant
predictors, all Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between CA1 microstructure
and task performance, CA1 ∼ M Matching∗age + P Matching∗age
+ iq, with a final sample size of 54 after removing multivariate
outliers. However, the overall regression was not statistically sig-
nificant, R2 = 0.097, Adj. R2 = −0.019, AICc = 210.61, F(6, 47) = 0.839,
p = 0.546, and there were no significant predictors, all Ps > 0.05.

Cornu ammonis fields 2 and 3
Inference tasks
There was no statistically significant relationship between
either of the inference tasks and CA2/3 microstructure. Multiple
linear regression was used to test if performance on any of the
inference tasks significantly predicted CA2/3 microstructure.
The fitted regression model was CA2/3 ∼ M Inference + P Infer-
ence + iq + sex∗age2, with a final sample size of 48 after removing
multivariate outliers. The overall regression was statistically
significant, R2 = 0.527, Adj. R2 = 0.430, AICc = 199.35, F(8, 39) = 5.44,
p = 0.0001. IQ significantly predicted CA2/3 microstructure,
β = 0.0008, p = 0.035, as did sex, β = 0.177, p = 0.004, sex ∗ age,
β = −0.019, p = 0.016, and sex ∗ age2, β = 0.0005, p = 0.019. There
were no other significant predictors, all Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between CA2/3 microstruc-
ture and task performance, CA2/3 ∼ M Inference∗age + P In
ference∗age + iq, with a final sample size of 50 after removing
multivariate outliers. The overall regression was statistically
significant, R2 = 0.245, Adj. R2 = 0.140, AICc = 101.71, F(6, 43) = 2.33,
p = 0.049. P Inference performance significantly predicted CA2/3
microstructure, β = −0.112, p = 0.041. There were no other
significant predictors, all Ps > 0.05.

Matching control tasks
There was no statistically significant relationship between any
of the matching tasks and CA2/3 microstructure. Multiple linear

regression was used to test if performance on any of the learning
tasks significantly predicted CA2/3 microstructure. The fitted
regression model was CA2/3 ∼ M Matching + P Matching + iq + sex
∗ age2, with a final sample size of 50 after removing multivari-
ate outliers. The overall regression was statistically significant,
R2 = 0.478, Adj. R2 = 0.376, AICc = 193.44, F(8, 41) = 4.69, p = 0.0004.
IQ significantly predicted CA2/3 microstructure, β = 0.001, p = 0.01,
as did sex, β = 0.188, p = 0.008, and sex ∗ age, β = −0.018, p = 0.042.
There were no other significant predictors, all Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between CA2/3 microstructure
and task performance, CA2/3 ∼ M Matching ∗ age + P Matching ∗

age + iq, with a final sample size of 53 after removing multivariate
outliers. The overall regression did not reach statistical signif-
icance, R2 = 0.107, Adj. R2 = −0.010, AICc = 181.92, F(6, 46) = 0.916,
p = 0.492, and there were no significant predictors, all Ps > 0.05.

Dentate gyrus
Inference tasks
Performance on the M Inference task significantly predicted DG
microstructure, suggesting that the DG is related to inference that
requires memory (Fig. 5C). However, we again found no interaction
with age, suggesting that the association between dentate gyrus
microstructure and inference tasks may not depend on age.

Multiple linear regression was used to test if performance on
any of the inference tasks significantly predicted DG microstruc-
ture. The fitted regression model was DG ∼ M Inference + P
Inference + iq + age2, with a final sample size of 49 after removing
multivariate outliers. The overall regression was statistically
significant, R2 = 0.420, Adj. R2 = 0.353, AICc = 213.64, F(5, 43) = 6.24,
p = 0.0002. M Inference performance significantly predicted
DG microstructure, β = −0.036, p = 0.030, as did IQ, β = 0.0011,
p = 0.0005. There were no other significant predictors, all Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between DG microstructure
and task performance, DG ∼ M Inference ∗ age + P Inference ∗

age + iq, with a final sample size of 50 after removing multivari-
ate outliers. The overall regression was statistically significant,
R2 = 0.406, Adj. R2 = 0.323, AICc = 210.53, F(6, 43) = 4.89, p = 0.0007. M
Inference performance significantly predicted DG microstructure,
β = −0.082, p = 0.040, as did IQ, β = 0.001, p = 0.002. There were no
other significant predictors, all Ps > 0.05.
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Matching control tasks
There was no statistically significant relationship between any of
the matching tasks and DG microstructure, suggesting that the
association between dentate microstructure and matching may
not vary much with age.

Multiple linear regression was used to test if performance on
any of the matching tasks significantly predicted DG microstruc-
ture. The fitted regression model was DG ∼ M Matching + P
Matching + iq + age2, with a final sample size of 50 after removing
multivariate outliers. The overall regression was statistically
significant, R2 = 0.251, Adj. R2 = 0.166, AICc = 206.89, F(5, 44) = 2.95,
p = 0.022; however, there were no significant predictors, all
Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between DG microstructure
and task performance, DG ∼ M Matching ∗ age + P Matching ∗

age + iq, with a final sample size of 50 after removing multi-
variate outliers. The overall regression did not reach statistical
significance, R2 = 0.244, Adj. R2 = 0.139, AICc = 203.76, F(6, 43) = 2.32,
p = 0.051, and there were no significant predictors, all Ps > 0.05.

Subiculum
Inference tasks
Performance on the P Inference task significantly predicted SUB
microstructure, suggesting that the SUB is related to inference
that does not require memory (Fig. 5B). Multiple linear regression
was used to test if performance on any of the inference tasks
significantly predicted SUB microstructure. The fitted regression
model was SUB ∼ M Inference + P Inference + iq + age, with a final
sample size of 49 after removing multivariate outliers. The overall
regression was statistically significant, R2 = 0.322, Adj. R2 = 0.260,
AICc = 216.70, F(4, 44) = 5.21, p = 0.002. P Inference performance
significantly predicted SUB microstructure, β = 0.050, p = 0.003,
as did age, β = −0.002, p = 0.014. There were no other significant
predictors, all Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between SUB microstructure
and task performance, SUB ∼ M Inference ∗ age + P Inference ∗

age + iq, with a final sample size of 50 after removing multi-
variate outliers. The overall regression did not reach statistical
significance, R2 = 0.228, Adj. R2 = 0.120, AICc = 212.50, F(6, 43) = 2.12,
p = 0.071, and there were no significant predictors, all Ps > 0.05.

Matching control tasks
There was no statistically significant relationship between any
of the matching tasks and SUB microstructure. Multiple linear
regression was used to test if performance on any of the match-
ing tasks significantly predicted SUB microstructure. The fitted
regression model was SUB ∼ M Matching + P Matching + iq + age,
with a final sample size of 50 after removing multivariate outliers.
The overall regression was significant, R2 = 0.277, Adj. R2 = 0.213,
AICc = 213.07, F(4, 45) = 4.31, p = 0.005, and 1 predictor reached
statistical significance, M Matching, β = −0.071, p = 0.016. There
were no other significant predictors, all Ps > 0.05.

In addition, we fitted a regression model that tested for age-
related changes in the relationship between SUB microstructure
and task performance, SUB ∼ M Matching ∗ age + P Matching ∗

age + iq, with a final sample size of 51 after removing multivari-
ate outliers. The overall regression was statistically significant,
R2 = 0.252, Adj. R2 = 0.151, AICc = 209.44, F(6, 44) = 2.48, p = 0.038, yet
no predictor reached statistical significance.

Discussion
Our goal was to determine age-related differences in the tissue
properties of hippocampal subfields and their relationships to
the development of associative inference and memory. We found
distinct relationships between age and cellular organization by
hippocampal subfield: linear for SUB and nonlinear for CA1,
CA2/3, DG, that moreover depended on sex for CA2/3. We found
that the tissue properties of the DG and SUB were both related to
associative inference performance, controlling for age, with the
DG being related to associative inference that required memory
and the SUB being related to associative inference that did not
require memory. Overall, our results suggest that hippocampal
subfields undergo distinct developmental trajectories in terms of
cellular organization, which in turn have distinct relationships
with associative inference and memory.

Microstructures of hippocampal subfields
demonstrate different relationships with age
We observed age-related changes in hippocampal subfields, find-
ing that different subfields have unique relationships with age
from childhood to adulthood. While CA1 and DG subfields dis-
played a nonlinear U-shaped relationship with age, with the low-
est FA in adolescents for CA1 and in adulthood for DG, the
SUB displayed a linear relationship with age, with FA decreasing
from childhood to adulthood. The CA2/3 subfield displayed a
more complicated relationship with age, with males exhibiting
a U-shaped relationship with the lowest FA in adolescents, and
females exhibiting an inverted U-shaped relationship with the
lowest FA in childhood.

The development of cellular organization within the hip-
pocampus has been investigated using measures of volume
across the entire hippocampus, hippocampal subregions, and
hippocampal subfields (Giedd et al. 1996; Hamer and Gerig 2008;
Ostby et al. 2009; Lee et al. 2014; Riggins et al. 2015; Daugherty
et al. 2017; Schlichting et al. 2017; Tamnes et al. 2018) while
investigations using diffusion imaging have focused on either
the entire hippocampus or hippocampal subregions but not
subfields using a single diffusion metric (i.e. mean diffusivity)
(Wolf et al. 2015; Lee et al. 2017; Callow et al. 2020). In the
present work, we employed an additional metric, FA, to assess
cellular organization within the hippocampus. We selected this
metric based on results from animal models that suggested
that subfields have distinct cellular organizations that could
be captured with FA (Sierra et al. 2015; Salo et al. 2017) and
that FA and MD provide independent information in human
hippocampus (Shereen et al. 2011; Treit et al. 2018). Our results
suggest that distinct developmental trajectories for hippocampal
subfields can be measured using FA. Notably, we did not find
age-related changes in FA within hippocampal subregions (see
Supplementary materials), suggesting that the changes in FA
within the hippocampus might occur cohesively within subfields
such that measurements of FA in subregions encompassing more
than 1 subfield cannot adequately capture the development of FA
in the hippocampus.

At least 1 prior study has reported age-related changes in
microstructure of hippocampal subregions (Langnes et al. 2020).
Using a cross-sectional design across the ages of 4–93 years, this
study reported different age-related changes for anterior and
posterior hippocampus: MD in anterior hippocampus decreases
from childhood to approximately 35 years of age while MD in
posterior hippocampus remains relatively stable. After the age
of 35 years, MD in both anterior and posterior hippocampus
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increases dramatically. In the current study, we segmented
the hippocampus into the head, body, and tail but found no
evidence of age-related changes in these subregions overall
(see Supplementary materials). However, results from the FA
analysis within each subfield are consistent with different
age-related changes for anterior and posterior hippocampus,
but suggest that age-related changes detected in the larger
anterior and posterior subregions may be driven by subfield-
selective changes in cellular organization, such as changes to the
characteristic fiber orientations of each subfield. More research
will be necessary to better understand the relationship between
developmental trends in cellular organization detected in larger
subregion segmentations and trends detected in smaller subfield
segmentations.

Associative inference performance that requires
memory improves over development
Associative inference improves gradually throughout develop-
ment (Shing et al. 2019; Schlichting et al. 2022), as do memory pro-
cesses (Bauer et al. 2015; Townsend et al. 2010; Ghetti and Bunge
2012). Our results further support the findings that associative
inference and memory improve throughout development. Perfor-
mance on an associative inference task that required memory was
greater in adults compared to adolescent children and greater
in adolescent children compared to younger children (originally
reported in Schlichting et al. 2017), suggesting that memory-based
associative inference changes throughout middle childhood and
adolescence. However, we did not find a similar result for simi-
larly structured inference task without a memory requirement:
perception-based inference performance was no different among
children, adolescents, and adults. One interpretation of this null
result is that associative inference in the absence of a mem-
ory requirement may reach adult-like performance earlier than
6 years of age. Although this interpretation would be consistent
with reports that children are capable of perception-based rea-
soning with novel items by the age of 4 years (Brainerd and Reyna
1992), it is possible that the null result was due to experimental
factors. For example, the perception-based task might have been
less sensitive to developmental changes than the memory-based
task given that the perception-based task (i.e. 50%) had a higher
floor than the memory-based task (i.e. 33%).

Microstructures of hippocampal subfields related
to associative inference and memory
Understanding the relationship between subfield development,
associative inference, and memory in terms of tissue microstruc-
ture can provide insight into the nature of memory and the
neural mechanisms supporting memory. We found that DG
microstructure was related to associative inference performance
when memory was required, but that SUB microstructure was
related to associative inference performance when memory
was not required. Furthermore, CA1 microstructure was related
to pair matching that did not require memory. Notably, the
relationships among subfield microstructure and behavior
were observed after controlling for age, suggesting that age
may not be a driving factor in the relationship between
subfield cellular organization and associative inference and
memory.

One theory of the neural mechanisms underlying associative
inference proposes that the hippocampus proactively integrates
new memories with existing memories through memory integra-
tion, a process of combining overlapping memory traces during
encoding (Schlichting and Preston 2015). Each of the hippocampal

subfields are thought to support unique aspects of the mem-
ory integration process. The DG subfield may assist memory
integration by supporting memory for directly experienced pair
associations through a process of pattern separation (Berron et al.
2016; Schapiro et al. 2017; Duncan and Schlichting 2018; Canada
et al. 2019). While the CA3 subfield is thought to activate mem-
ories related to a novel event (McKenzie et al. 2014), the CA1
subfield is thought to use novelty as a cue to trigger the memory
integration process (Larkin et al. 2014). The function of the SUB is
less clear; however, it is more densely connected to regions outside
of the hippocampus than subfields in the hippocampus proper
(i.e. DG, CA2/3, CA1), suggesting that it has functions that are
potentially independent of core hippocampal functions (Aggleton
and Christiansen 2015).

Our results suggest that hippocampal subfields may play
important, yet distinct, roles in integrating new memories with
existing memories during development. We observed different
behavioral correlates of subfield cellular organization, namely
that DG was related to associative inference that required
memory while CA1 was related to pair matching that did
not require memory. Although more work is needed to clarify
the implications of our results, we suggest that our results
support the proposal that hippocampal subfields have unique
functional properties that, together, may support inference in
the age range corresponding to our sample, namely middle
childhood, adolescence, and young adulthood. One possibility
is that DG may be important for successful inference to supply
highly accurate representations of learned associations. In other
words, DG microstructure might support associative inference
through its ability to support accurate encoding for separate
representations that would allow for more accurate reasoning
about the relationships among those separate representations,
a mechanism that may be more prevalent in childhood than in
adulthood (Schlichting et al. 2017, 2022; Duncan and Schlichting
2018; Shing et al. 2019). While adults may support associative
inference behavior by drawing on integrated hippocampal
representations, children may be relying on separate, non-
integrated memories for directly experienced associations. Given
our developmental sample, it is possible that participants were
performing the memory-based associative inference task using
separate memory encodings rather than integrated memories.

Our results are consistent with the notion that the SUB may
have functions that are independent of core hippocampal func-
tions (Aggleton and Christiansen 2015). Results suggest that the
cellular organization within the SUB was related to associative
inference that could be accomplished based on perceptually avail-
able information and, therefore, may not necessarily be related to
memory. It is possible that the SUB interfaces with other cortical
mechanisms to support reasoning in the absence of relevant
memories, given that it is more densely connected to regions out-
side of the hippocampus than the other subfields. More research
will be necessary to better understand the role of the SUB in
associative inference and memory.

Conclusion
The cellular organization of hippocampal subfields demonstrate
different relationships with age and exhibit distinct relations with
associative inference and memory.
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