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Real-world decisions require understanding generalities (e.g., sorting an album collection by genre) and the
ability to remember specific events (where one acquired a particular album). Discriminating between broad
categories versus individual events requires contrasting features at different levels of specificity and therefore
have different representational demands. Here, we used a within-participant design to test the hypothesis
that different training protocols (blocked or interleaved order) would have dissociable impacts on the
representation of generalities and specifics. On each trial, participants viewed a painting from one of 12 artists
along with information about its unique location. Category generalization and source memory were tested
immediately and after 1 week. Interleaving enhanced generalization, while blocking improved incidental
learning of episodic details. Furthermore, category knowledge remained stable over time, whereas episodic
details declined. These results indicate that interleaving and blocking optimize discrimination at different
levels of specificity, with differential impacts on inferring generalities and remembering specific events.

General Audience Summary
In real-world learning experiences, individuals can learn specific facts, for example, whichmuseum collection
holds a specific painting by Monet, while simultaneously extracting generalities, such as the general style of
Monet’s brush strokes and color palette. Both types of learning are important in classroom settings. However,
they may benefit from different types of instruction. Knowing where Monet’s specific paintings are located
requires formingmemories that discriminate between each painting and its location from all other paintings by
Monet. Learning howMonet’s painting style differs fromManet’s requires discriminating between paintings
from each artist. Here, we tested whether different learning sequences supported discriminative contrast of
features required for remembering specifics and generalities.We found that interleaving paintings by different
artists improved individuals’ ability to learn each artist’s general style. In contrast, blocking paintings by
individual artists (i.e., presenting all of one artist’s paintings in sequence before moving on to the next artist)
improved incidental memory for the specific locations of each painting by that artist. These findings suggest
that instructors have an opportunity to emphasize one type of learning over another, specific details and
general knowledge, by manipulating how they present information to students in classroom settings.
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In real-world contexts, we encounter situations requiring the
recall of specific event details and others that may involve drawing
upon general knowledge. Acquisition of episodic details and general
category knowledge has typically been studied separately, but in
natural learning contexts, it is often possible to extract both general
knowledge and specific details from the same learning event. For
instance, an art student may encounter the Doni Tondo for the first
time and use her general knowledge of Renaissance artists to infer
that the work was painted by Michelangelo while simultaneously
encoding a detailed memory linking the Doni Tondo with her visit
to the Uffizi Gallery in Florence. An open question is whether
the acquisition of general versus episodic knowledge benefits from
similar learning conditions.
Learning general category knowledge can be optimized by

manipulating the order or sequence of category exemplars during
the study (Brunmair & Richter, 2019). Interleaving exemplars
from different categories improves learners’ ability to classify new
exemplars of those categories (Brunmair & Richter, 2019), a finding
that is counterintuitive to learners’ preference for blocking exemplars
by category (Kornell & Bjork, 2008). Despite participants’ intuitions
that blocking might facilitate encoding of category-defining features,
experimental findings support a discriminative-contrast hypothesis—
that extracting information about the differences between exemplars
of different categories, rather than the similarities among members of
the same category, may be more critical for category learning (for a
review and meta-analysis, see Brunmair & Richter, 2019).
Discrimination is also a central tenet in episodic memory theory

(Bakker et al., 2008; Criss & Koop, 2015; Hulbert & Norman, 2015;
Lohnas et al., 2018). Studies suggest that forming discriminable
representations is fundamental to overcoming memory interference,
allowing for the successful retrieval of episodic details that
differentiate similar episodes (Chanales et al., 2021; Favila et al.,
2016; McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997).
While placing similar episodes close together in time might increase
the potential for interference when remembering the specific details
that differentiate them (Noh et al., 2023), blocking similar episodes
could provide an opportunity for learners to directly compare and
contrast their distinct individual features. Indeed, learners’ attention
is often biased toward the features that differ across successive
stimulus presentations (Barron et al., 2016; Horner &Henson, 2008;
Reed Hunt & Worthen, 2006; Summerfield et al., 2008; Yassa &
Stark, 2011). Thus, just as category generalization may benefit from
interleaving exemplars from different categories, memory for
episodic details may improve when similar events are juxtaposed
during encoding (i.e., blocking same-category exemplars together).
Here, we propose that discriminative contrast is a universal

learning principle that benefits all types of knowledge, whether
general or specific. We predict learners naturally compare and
contrast adjacent trials to reduce competition or interference, thus
enhancing discrimination between episodes learned in close
temporal proximity. Importantly, our framework suggests that the
optimal sequence for learning generalities and specifics will differ.
To improve individuals’ broad category knowledge, a learning
sequence should juxtapose examples from different categories to
allow contrast of category features that differ. In contrast, to improve
memory precision of examples within a category, one should study
exemplars from the same category in close temporal proximity to
highlight what makes each exemplar unique. In other words,

sequencing could be used to promote local contrast of stimulus
features to be optimal for the desired type of learning.

To test our hypothesis that general category knowledge and
detailed memory may benefit from different learning sequences—
interleaved and blocked, respectively, we adapted a paradigm from
Kornell and Bjork (2008), in which participants learned to categorize
paintings from unfamiliar artists (categories) studied in an interleaved
or blocked fashion within subjects. For each participant, six artists’
paintings were presented in a blocked sequence (all paintings from
one artist were presented), whereas the remaining six artist paintings
were interleaved with each other (one painting from each of the six
different artists was presented). Each individual painting was also
paired with a unique location (real-world landmarks).

By incorporating multiple stimuli on each study trial (artist name,
painting, location), our task mimics a naturalistic learning scenario in
which learners might encode various event features that can be
beneficial for enhancing general category knowledge and/or episodic
details. We tested knowledge acquisition immediately after study
and after a 1-week delay using a category generalization test which
involved categorizing novel (unstudied) paintings by the studied
artists. We also included two memory tests targeting different levels
of specificity. The detailed memory test asked participants to
remember the specific location of each painting, which required
precise source memory of individual study trials and differentiation
between studied paintings by the same artist. The general recognition
test, on the other hand, only required participants to remember the
artist name associated with a location, without needing to recall any
specific paintings. We hypothesized that interleaving would enhance
category generalization by facilitating between-category discrimina-
tion, whereas blocking would improve detailed memory by high-
lighting the distinctiveness of episodes within the same category.

Experiment 1: Determining Optimal Learning
Schedules for Different Levels of Knowledge Specificity

Method

Experiment 1 used a within-participants design to manipulate the
presentation sequence—blocked or interleaved—in which partici-
pants studied category exemplars to examine its effects on both
immediate and delayed tests of knowledge specificity. Participants
completed two experimental sessions that were 1 week ± 1 day apart.
The first session consisted of the learning phase (Figure 1) as well as
immediate tests of general and detailed knowledge (Figure 2). The
second session assessed both generalization and detailed memory
after a delay, using a set of test items unique from those used for the
immediate memory tests.

Participants

Participants were recruited from the University of Texas at
Austin’s Psychology undergraduate subject pool. Participants
received course credit for their participation in the study. Informed
consent was obtained for each participant prior to any data collection
in accordance with the University of Texas Institutional Review
Board. There were 51 participants in Experiment 1 (age = 18–31
years,M ± SD = 19.96 ± 2.96, 16 male). The target sample size was
determined from a power analysis conducted on the results from
Kornell and Bjork (2008): The reported effect size for the interleaving
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benefit on induction performance was η2p = .39. With a significance
criterion of α = .05 and power = .95, our power analysis (using
G*Power) revealed that the minimum sample size needed with this
effect size is N = 8 to see an interleaving effect for generalization
performance in our task using a within-subjects design. However,
in the present study, we further wanted to assess an interaction of
learning schedule on general category knowledge and detailed
memory across a 1-week retention interval; thus, we aimed for a
minimum of double the sample size required based on the power
analysis (minimum sample size of 16 for each analysis). After the
initial piloting of our task design, we determined that approximately
50 participants would be necessary to adequately assess retention of
knowledge across our multiple memory tests, especially given the
difficulty of the “Detailed Recognition” source memory task that
resulted in only 19 usable data points for one particular analysis

(see the Analyses subsection of the Results section in Experiment 1
for analysis details and exclusions). Of the 51 participants, data from
one participant were excluded for technical issues with the software
that arose in Session 2, leaving a final sample size of 50 for the target
analysis (age = 18–31 years, M ± SD = 20 ± 2.98, 16 male).

Materials

The images used for the experiments were 18 landscape paintings
by each of the 12 artists (Grossman, Grote, Hawkins, Juras,
Lindenberg, McKinley, McNamara, Petro, Schlorff, Schwartz,
Walter, and Wexler). Six unique paintings by each artist were used
for the learning and memory test phases, and six unique paintings
were used for each generalization test (immediate and delayed).
Paintings were cropped and resized to 500 × 333 pixels. In addition,
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Figure 1
Example Training Phase Trials and Learning Sequence Schematic

(a)

(b)

Note. (a) During training, participants view a painting paired with a location, along with 12 artist name choices. Participants learn to identify the artist of each
painting through trial and error. (b) Artist paintings were either shown in a blocked or interleaved sequence using a within-subjects design. In the blocked
sequence, all six paintings of the same artist were presented in a random order. In the interleaved sequence, one painting from each of the six interleaved artists
was presented in a random order. For each participant, six artists’ paintings were studied in a blocked sequence, whereas the other six artists’ paintings were
studied in an interleaved sequence. The procedure was counterbalanced between subjects such that some participants started with a blocked sequence
(BIIBBIIBBIIB) and others started with an interleaved sequence (IBBIIBBIIBBI).
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we used images of 72 famous landmarks (36 natural and 36 manmade
images cropped and resized to 333 × 333 pixels), each of which was
paired with a unique painting during the learning phase. The landmark
images also served as memory probes and choices during the source
memory tests. After completing the experiment, participants were
asked about their preexperimental familiarity with each artist. No
participants reported any prior knowledge of the artists or their
paintings.

Procedure

Session 1 Learning. During each learning trial, participants saw
one painting next to an image of a unique location at the top of the
screen (Figure 1a). Participants were told that their goal was to learn
each artist’s painting style and that in a later phase, they would be
shown a new painting and would have to identify the artist based on
what they learned about each artist’s style. To facilitate learning the
artists’ style and ensure participants’ sustained attention during the
study, participants were asked to select the name of the artist to which
each painting could be attributed from all 12 possibilities (presented
as options at the bottom of the screen) on each trial. Participants had
up to 10 s to make their selection. After making their choice, the
correct artist’s name was presented as feedback (2 s) before moving
on to the next painting–landmark pair. Across learning, the screen
position associated with each artist’s name was shuffled trial to trial to
avoid spatial response biases during learning. During the learning
phase, participants were exposed to six unique paintings for each of
the 12 artists (36 different paintings in total).
Each painting was paired with a unique landmark during

learning. Participants were instructed that the landmarks corre-
sponded to the nearest recognizable location where the painting
could be found (e.g., a painting shown next to a picture of the
Washington Monument indicated that the painting was located near
that landmark). Participants were told to use the landmarks as an aid
for learning but were not explicitly instructed that they would
be tested on the associations between paintings and landmarks.
Assignment of landmarks to individual paintings was determined
randomly for each participant with a broad constraint that of the six

paintings for each artist, half were paired with man-made
landmarks, and the other half were paired with natural landmarks.

To assess the effects of different learning sequences on the
acquisition of general (category) knowledge and detailed (source
location) memory, wemanipulated study sequence within subjects by
presenting the 12 artist categories using one of two possible sequence
types: blocked and interleaved (Figure 1b). For each participant, six of
the artists (determined randomly for each participant) were assigned
to each sequence type (six blocked artists, six interleaved artists). For
blocked sequences, all six paintings from one artist were presented
sequentially (Figure 1b, “Blocked sequence”). For interleaved
sequences, one painting from each of six artists was presented
sequentially (Figure 1b, “Interleaved sequence”). In both types of
sequence, the same set of six paintings per artist was shuffled and
repeated a total of five times, to allow for better encoding of episodic
details for each trial. The six blocked sequences (each with six
paintings from a unique artist) and six interleaved sequences (each
with one unique painting from the same six artists) were presented
to each participant in a counterbalanced order: BIIBBIIBBIIB or
IBBIIBBIIBBI.

Generalization Test. After the training phase, participants were
tested on the general category-level knowledge they acquired during
training. During the generalization test (Figure 2, “Generalization”),
participants were shown 72 new (unstudied) paintings (six new
paintings per artist) and asked to identify the correct artist based on
what they learned about each artist’s painting style during the learning
phase. Participants were shown a painting and had up to 15 s to select
among the 12 artist name options. After participants made their
selection (or after 15 s), they were shown the correct artist’s name for
2 s before moving on to the next painting. The 72 test trials were
pseudorandomly presented as six blocks of 12 paintings, with each
block consisting of one novel painting from each artist presented in a
random order.

Detailed Recognition Test. After the generalization test,
participants were tested on their memory for specific details
presented during the training phase. In the detailed recognition test
(Figure 2, “Detailed Recognition”), participants were asked to select
the location that was paired with specific paintings that were studied
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Figure 2
Example Trials From Each Test Phase

Note. In Session 1, participants completed a training phase, followed by three different tests of knowledge specificity. Participants returned 1 week later
(Session 2) to complete three delayed tests of knowledge specificity. (a) In the generalization test, participants were shown a novel (unstudied) painting and had
to select the correct artist from 12 artist name options. (b) In the general recognition test, participants were shown a previously studied landmark and had to
identify the artist whose work was at that location. (c) In the detailed recognition test, participants had to select the location of a previously studied painting.
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in the training phase. Participants were shown a painting and asked
to identify the location of the painting (i.e., the landmark that was
paired with that painting during training). Participants were tested
on half of the paintings they studied during the training phase (the
other half was reserved for the retention test a week later) without
any feedback. For each of the 36 tested paintings, participants had
15 s to choose among six previously seen landmarks. The paintings
for this phase were randomly selected (three studied paintings per
artist) and presented in a pseudorandom order across three blocks,
with each block consisting of one painting from each artist presented
in a random order. The response choices for each painting were
landmarks that were paired with paintings by the same artist during
training, which made the detailed recognition test highly specific
and particularly difficult, as learners had to remember the specific
painting’s location and could not use general category-level infor-
mation to eliminate any of the landmark options provided.
General Recognition Test. After the detailed recognition

test, participants then completed a more general test of memory.
The general recognition test differed from the detailed recognition test
in that participants were asked to identify the artist associated with a
given location from the training phase, without having to recall the
specific details of the painting that was associated with that location.
During the general recognition test (Figure 2, “General Recognition”),
participants were shown a previously studied landmark and asked to
remember the name of the artist whose painting was located at that
landmark. Participants were tested on the 36 landmarks that were
paired with the paintings tested in the previous phase. The 36
landmarks used were presented in a pseudorandom order, without
feedback, across three blocks, with each block consisting of one
painting from each artist presented in a random order. Participants
were shown a picture of a landmark and had up to 15 s to select
from 12 artist name options to make their choice. While this general
recognition test still probes memory, it is less dependent on remem-
bering the specific details of any individual painting. Thus, the general
recognition test serves as an easier and more general test of memory
relative to the detailed recognition test.
Tests of Knowledge Retention. Participants returned 1 week

later and completed delayed tests of generalization, detailed
recognition, and general recognition. The delayed tests were identical
to the immediate tests in their structure (e.g., number of trials, timing,
shuffling). During the generalization test, participants were tested on
72 new paintings (six new paintings per artist) and asked to identify
the artist based onwhat they learned a week prior. For the detailed and
general recognition tests, participants were tested on the remaining
half of the paintings that were studied during the training phase in
Session 1.

Analyses

A 2 (Schedule: Blocked vs. Interleaved) × 2 (Session: Immediate
vs. Delayed) within-subjects analysis of variance (ANOVA) was
conducted for each test (generalization, detailed recognition, and
general recognition) to assess how training with different schedules
impacted generalized knowledge and memory specificity across
sessions. Participants who showed chance levels of overall learning
performance (regardless of schedule) on any immediate test were
excluded from the analysis of that particular test, as we are unable to
adequately assess retention of knowledge on Session 2 in cases of no
initial learning. For each test phase, we used a binomial probability

distribution to determine chance levels of performance using the
number of trials in that test phase and cumulative probability of
success from guessing on every trial. Importantly, chance levels of
performance on each test were assessed using average performance,
collapsed across the blocked and interleaved conditions. Because
our sequence manipulation was within subjects, we were thus able
to average condition data within participants when considering
exclusions. Therefore, exclusions were determined based on overall
performance, were blind to condition-level effects (i.e., blocked vs.
interleaved), and thus did not bias our results. After applying these
exclusion criteria to our 50 participants, we were left with 44 data
points in the generalization test (accuracy ≥ 0.153), 19 in the detailed
recognition test (accuracy ≥ 0.277), and 37 in the general recognition
test (accuracy ≥ 0.166). These numbers satisfied the minimum
sample size requirements as determined by our power analysis (see
the Participants subsection of the Method section in Experiment 1).
Materials and analysis code for this study are available on GitHub
(https://github.com/prestonlab/Paintings_JARMAC).

Results

Generalization Test

The average generalization performance for each condition is
presented in Figure 3 (“Generalization”). A 2 (Schedule: Blocked,
Interleaved) × 2 (Session: Immediate, Delayed) within-subjects
ANOVA revealed a main effect of schedule, F(1, 43) = 22.96,
MSE = .022, p < .001, η2p = .35, such that accuracy was higher for
identifying novel paintings of interleaved artists (M= .43, SD= .18)
relative to blocked artists (M = .32, SD = .12). There was also a
marginally significant effect of session, F(1, 43) = 3.90, MSE =
.008, p = .055, η2p = .08, such that generalization accuracy showed
improvements in Session 2 (M = .39, SD = .15) relative to Session 1
(M = .36, SD = .15). Notably, there was a Schedule × Session
interaction, F(1, 43) = 19.74, MSE = .004, p < .001, η2p = .32.
Interleaved training led to superior generalization accuracy (M =
.43, SD= .18) relative to blocked training on an immediate test (M=
.28, SD = .12), t(43) = 6.28, p < .001. However, the interleaving
benefit was attenuated after a delay, as the blocked condition
showed significant improvements in performance on Session 2 (M=
.35, SD = .13) relative to Session 1 (M = .28, SD = .11), t(43) =
3.21, p = .003, whereas the interleaved condition showed no
significant difference in performance from Session 1 (M= .43, SD=
.17) to Session 2 (M = .42, SD = .18), t(43) = 1.03, p = .307. The
overall improvement in the blocked groupmay be due to the fact that
feedback was provided during the generalization test, thereby giving
the blocked group an opportunity to gain additional training at an
interleaved study schedule and improve over the course of the
generalization test. Similarly, Kornell and Bjork (2008) found that
when participants received feedback during their test of category
induction (generalization), the blocked group showed improve-
ments across the four test blocks.

To minimize the influence of feedback and more accurately
examine retention of category knowledge, we conducted another 2
(Schedule: Blocked, Interleaved)× 2 (Session: Immediate, Delayed)
within-subjects ANOVA on the generalization test but restricted our
analysis to the last 12 test trials from Session 1 and the first 12 test
trials of Session 2. This restricted analysis revealed twomain effects:
Interleaved training (M= .42, SD= .26) was still superior to blocked
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training (M = .31, SD = .19), F(1, 43) = 11.16, MSE = 0.041, p =
.002, η2p = .21, but the main effect of session revealed that
performance does not in fact improve across a delay. We instead
observe a significant decrease in generalization performance when
comparing performance at the end of Session 1 (M = .40, SD = .23)
relative to the beginning of Session 2 (M= .32, SD= .21),F(1, 43)=
10.39, MSE = 0.041, p = .002, η2p = .20.

General Recognition Test

The average performance for each condition on the general
recognition test is presented in Figure 3 (“General Recognition”). A 2
(Schedule: Blocked, Interleaved) × 2 (Session: Immediate, Delayed)
within-subjects ANOVA revealed a main effect of schedule,
F(1, 36) = 49.16, MSE = .021, p < .001, η2p = .58; accuracy was
higher when participants had to remember artists associated with a
given landmark for interleaved artists (M = .32, SD = .16) relative to
blocked artists (M = .15, SD = .09). There was also a main effect
of session, F(1, 36) = 54.54, MSE = .014, p < .001, η2p = .60;
performance was higher in Session 1 (M = .31, SD = .14) relative to
Session 2 (M = .16, SD = .11). There was also a Schedule × Session
interaction, F(1, 36) = 22.32, MSE = .014, p < .001, η2p = .38. This
interaction revealed that there was a large performance benefit of
interleaved training (M = .44, SD = .19) relative to blocked training
(M= .18, SD= .10) on Session 1, t(36)= 7.12, p< .001, d= 1.17, but
the interleaving benefit decreased significantly in Session 2, t(36) =
3.02, p= .005, d= .50. The attenuation of the interleaving benefit was
due to the fact that the interleaved condition suffered greater
performance declines from Session 1 (M= .44, SD= .19) to Session 2
(M = .20, SD = .13), t(36) = 6.91, p < .001, d = 1.14, whereas
the magnitude of performance declines from Session 1 (M = .18,

SD = .10) to Session 2 (M = .13, SD = .09) was much smaller in the
blocked group, t(36) = 2.70, p = .011, d = .44, likely due to the fact
that initial performance was already much closer to chance levels in
the blocked condition relative to the interleaved condition.

Detailed Recognition Test

The average performance for each condition of the detailed
recognition test is presented in Figure 3 (“Detailed Recognition”). A 2
(Schedule: Blocked, Interleaved) × 2 (Session: Immediate, Delayed)
within-subjects ANOVA revealed a main effect of schedule; blocked
training led to better performance (M = .29, SD = .10) relative to
interleaved training (M = .23, SD = .08) on this test of item-level
specificity, F(1, 18) = 8.34, MSE = 0.014, p = .01, η2p = .32.
There was also a main effect of session; participants performed better
on Session 1 (M = .34, SD = .10) relative to Session 2 (M = .19,
SD = .09), F(1, 18) = 55.87, MSE = 0.014, p < .001, η2p = .76.
Performance in Session 2 was no greater than chance for either the
blocked (M = .19, SD = .09) or interleaved (M = .18, SD = .09)
condition, suggesting that no detailed information was retained after a
1-week delay. The interaction between schedule and session was not
significant, F(1, 18) = 2.69, MSE = 0.014, p = .118, η2p = .13.

Experiment 2: Reexamination of Sequencing
Effects in the Absence of Feedback

In Experiment 1, we saw an improvement in generalization
performance from Session 1 to Session 2 (Figure 3, Generalization).
This improvement is attributable to the fact that the generalization
test in Experiment 1 provided feedback which led to improved
induction performance in the blocked condition across test blocks
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Figure 3
Results of the Generalization (Left), General Recognition (Middle), and Detailed Recognition (Right) Tests in Experiment 1

Note. Large circles indicate group means, and small circles indicate individual participant performance. Error bars indicate 95% confidence intervals of
the mean.

334 NOH, BJORK, AND PRESTON



(consistent with Kornell & Bjork, 2008). In the original Kornell and
Bjork (2008) study, feedback provided during the generalization
test phase served as an additional learning opportunity, particularly
in the blocked condition, which showed significant performance
improvements over the course of the test phase. Additional learning
during the generalization test could be especially problematic in
our task due to the fact that our experiment design added two
subsequent tests of memory, as well as a retention component,
whose results may have been contaminated by the additional
learning opportunity provided by feedback during the generaliza-
tion test. To eliminate this potential confound, we removed feed-
back during the generalization test and otherwise repeated our
experiment in Experiment 2.

Method

Participants

Participants were recruited from the University of Texas at Austin’s
Psychology undergraduate subject pool. Participants received course
credit for their participation in the study. There were 51 participants in
Experiment 2 (age = 18–22, M ± SD = 18.94 ± 1.10, 10 male). The
sample size was selected to match that of Experiment 1.We aimed for
approximately 50 participants to adequately assess the retention of
knowledge for different learning schedules across multiple memory
tests. This resulted in 21 usable data points for the detailed recognition
test analysis (see the Analyses subsection of the Results section in
Experiment 2 for analysis details and exclusion criteria).

Materials and Procedure

The materials and procedures in this experiment were nearly
identical to those in Experiment 1. Experiment 2 differed from

Experiment 1 solely in that no feedback was provided during either
session of the generalization test.

Analyses

A 2 (Schedule: Blocked, Interleaved) × 2 (Session: Immediate,
Delayed) within-subjects ANOVA was conducted for each test
(generalization, detailed recognition, and general recognition) to
assess the effects of training with the different schedules across
sessions on generalized knowledge and specificity. Participants who
showed chance levels of overall learning performance (regardless of
schedule) on any immediate test were excluded from the analysis
of that particular test, as we are unable to adequately assess retention
of knowledge on Session 2 in cases of no initial learning. For each
test phase, we used a binomial probability distribution to deter-
mine chance levels of performance using the number of trials in
that test phase and cumulative probability of success from guessing
on every trial. Again, these exclusions were applied to average
performance collapsed across the blocked and interleaved condi-
tions and thus performed in an unbiased manner. After applying
these exclusion criteria to our 51 participants, we were left with
44 data points in the generalization test (accuracy ≥ 0.153),
21 in the detailed recognition test (accuracy ≥ 0.277), and 40 in
the general recognition test (accuracy ≥ 0.166). These numbers
satisfied the minimum requirements as determined by our power
analysis (see the Participants subsection of the Method section in
Experiment 2).

Results

Generalization Test

The average generalization performance for each condition
is presented in Figure 4 (left, “Generalization”). A 2 (Schedule:
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Figure 4
Results of the Generalization (Left), General Recognition (Middle), and Detailed Recognition (Right) Tests in Experiment 2

Note. Large circles indicate group means, and small circles indicate individual participant performance. Error bars indicate 95% confidence
intervals of the mean.
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Blocked, Interleaved) × 2 (Session: Immediate, Delayed) within-
subjects ANOVA revealed two main effects. There was a main
effect of schedule such that accuracy was higher for identifying
novel paintings of interleaved artists (M = .40, SD = .15)
relative to blocked artists (M = .32, SD = .13), F(1, 43) = 48.80,
MSE = .005, p < .001, η2p = .53. There was also a main effect
of the session such that generalization accuracy was higher in
Session 1 (M = .33, SD = .14) than in Session 2 (M = .29, SD =
.15), F(1, 43) = 17.45,MSE = .005, p < .001, η2p = .29. There was
no Schedule × Session interaction, F(1, 43) = 1.81, MSE = .005,
p = .185, η2p = .04.

General Recognition Test

The average performance for each condition on the general
recognition test is presented in Figure 4 (middle, “General
Recognition”). A 2 (Schedule: Blocked, Interleaved) × 2 (Session:
Immediate, Delayed) within-subjects ANOVA revealed a main
effect of schedule, F(1, 39) = 122.49,MSE = .013, p < .001, η2p =
.76. Accuracy was higher for the interleaved condition (M = .34,
SD = .14) relative to the blocked condition (M = .15, SD = .10).
There was also a main effect of session, F(1, 39) = 131.93,
MSE = .008, p < .001, η2p = .77; performance was higher in
Session 1 (M = .33, SD = .14) than Session 2 (M = .16, SD = .10).
There was also a Schedule × Session interaction, F(1, 39) = 17.38,
MSE = .016, p < .001, η2p = .31. This interaction revealed that
there was a performance benefit of interleaved training initially
(M = .47, SD = .16) relative to blocked training (M = .19, SD =
.12) during Session 1, t(39) = 9.10, p < .001, d = 1.44. However,
this interleaving benefit was attenuated in Session 2, t(39) = 8.77,
p < .001, d = .83, as the interleaved condition suffered greater
performance declines from Session 1 to Session 2, Mdiff = .25,
SD = .18, t(39) = 8.77, p < .001, d = 1.39, relative to the
blocked condition, Mdiff = .08, SD = .13, t(39) = 3.97, p < .001,
d = .63.

Detailed Recognition Test

Average performance for each condition of the detailed recogni-
tion test is presented in Figure 4 (right, “Detailed Recognition”).
A 2 (Schedule: Blocked, Interleaved) × 2 (Session: Immediate,
Delayed) within-subjects ANOVA again revealed a main effect of
schedule. Blocked training led to better performance (M = .32,
SD = .13) relative to interleaved training (M = .25, SD = .10) on
the detailed recognition test, F(1, 20)= 9.51,MSE= 0.018, p= .006,
η2p = .32. There was also a main effect of session; participants
performed better on Session 1 (M = .36, SD = .13) than Session 2
(M = .21, SD = .10), F(1, 20) = 46.51, MSE = 0.018, p < .001,
η2p = .70. Performance in Session 2 was no greater than chance for
either the blocked (M = .23, SD = .11) or interleaved (M = .20,
SD = .08) condition, suggesting that no detailed information was
retained after a 1-week delay. The interaction between schedule and
session was not significant, F(1, 20) = 1.75,MSE = 0.018, p = .201,
η2p = .08.

Combined Memory Test Results Across Experiments

Experiment 1 differed from Experiment 2 in that feedback was
provided during the generalization test. The general recognition and

detailed recognition tests, however, were identical in design across
Experiments 1 and 2 and had the same pattern of results. Since the
generalization test came before the two tests ofmemory, wewanted to
address possible concerns about how feedback during the generali-
zation test may have provided participants with additional learning
opportunities (particularly in the blocked condition) and contami-
nated performance on the memory tests that came after it. To
determine if the feedback provided during Experiment 1 influenced
the outcomes of the subsequent tests that followed, we repeated our
ANOVA for the general recognition and detailed recognition tests
by combining both data sets and added “Experiment” as a between-
subjects factor to determine if there were significant differences bet-
ween results across the two experiments. For each analysis (general
recognition test, detailed recognition test), we conducted a 2 (Session:
Immediate, Delayed) × 2 (Schedule: Blocked, Interleaved) ×
2 (Experiment: 1, 2) mixed-effects ANOVA. Schedule (blocked,
interleaved) and session (immediate, delayed) were defined as within-
subjects factors, whereas experiment (Experiment 1, Experiment 2)
was defined as a between-subject factor.

For the general recognition test, we found no significant difference
in performance across the two experiments, F(1, 75) = .313, MSE =
.022, p = .577, η2p = .004, nor were there any significant interactions
that included the experiment factor. The combined analysis across
Experiments 1 and 2 reinforced the Schedule × Session interactions
that were reported previously (in Experiments 1 and 2) for the general
recognition test, F(1, 75) = 39.33, MSE = .015, p < .001, η2p = .34.

For the detailed recognition test, we again found no significant
difference in performance between the two experiments, F(1, 38) =
1.96,MSE= .012, p= .169, η2p = .049, nor were there any significant
interactions that included the Experiment (between-subjects) factor.
The combined analysis across Experiments 1 and 2 reinforced the
significantmain effect of schedule (blocked> interleaved),F(1, 38)=
17.32,MSE = .016, p < .001, η2p = .31, and significant main effect of
session (immediate > delayed), F(1, 38) = 100.36,MSE = .016, p <
.001, η2p = .73. However, the combined analysis revealed a significant
Schedule × Session interaction that was not present in the individual
reporting of results in Experiment 1 or 2, F(1, 38) = 4.28, MSE =
.016, p < .045, η2p = .10. The interaction was driven by the fact that
there was initially a statistically significant benefit of blocked training
(M = .40, SD = .13) relative to interleaved training (M = .30, SD =
.10) on the detailed recognition test in Session 1, t(39) = 3.70, p =
.001, d = .58. In contrast, the blocked and interleaved conditions did
not differ significantly in performance on Session 2,Mdiff= .02, SD=
.13, t(39) = 1.15, p = .256, d = .182, as both conditions showed
performance levels that were no greater than chance.

Interaction Between Sequence and Knowledge
Type on Immediate Test

Both Experiments 1 and 2 showed different patterns of results with
respect to training sequences at various levels of knowledge
specificity. Thus, we conducted a 3 (Test Type: Generalization,
General Recognition, Detailed Recognition) × 2 (Session: Immediate,
Delayed) × 2 (Schedule: Blocked, Interleaved) within-subjects
ANOVA to assess any potential interactions that included the test
type variable. Participants were only included for this analysis if they
passed the exclusion criteria for all three tests (above-chance
performance on immediate test for all three tests), which left 15
participants in Experiment 1 and 18 participants in Experiment 2.
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Scores within each test type (generalization, general recognition, and
detailed recognition) were z-scored across sessions (Sessions 1 and 2)
to allow for more direct comparisons in performance across the three
tests. This analysis revealed a significant three-way interaction for
Test Type × Session × Schedule in both Experiment 1, F(2, 28) =
3.62,MSE = 2.09, p = .040, η2p = .21, and Experiment 2, F(2, 34) =
5.07, MSE = 2.34, p = .012, η2p = .23. The three-way interaction is
further analyzed below.
In Experiment 1, the two-way Test Type × Schedule interaction

was significant, F(1, 14) = 14.84, MSE = 8.13, p < .001, η2p = .52,
consistent with our pattern of results showing different tests benefit
from different training schedules (Figure 3). Post hoc tests restricted
to two test types (generalization vs. general recognition, general
recognition vs. detailed recognition, and generalization vs. detailed
recognition) revealed that the Test Type × Schedule interaction was
significant for generalization versus detailed recognition, F(1, 14) =
12.72,MSE = 7.31, p = .003, η2p = .48, and for general recognition
versus detailed recognition, F(1, 14) = 39.27, MSE = 15.55, p <
.001, η2p = .74. This interaction is driven by the fact that detailed
recognition benefitted from a blocked training schedule, whereas
general recognition and generalization benefitted from an inter-
leaved schedule. The Test Type × Schedule interaction was not
significant for generalization versus general recognition, as both
tests showed an interleaving benefit, F(1, 14) = 2.28, MSE = 1.53,
p = .153, η2p = .14.
The two-way Test Type × Schedule interaction in Experiment 2

was also found to be significant, F(1, 17) = 20.84,MSE = 15.08, p <
.001, η2p = .55, consistent with our results demonstrating the diffe-
rential effects of training schedules on general and detailed knowledge
(Figure 4). Post hoc tests restricted to two test types (generalization vs.
general recognition, general recognition vs. detailed recognition, and
generalization vs. detailed recognition) revealed the same pattern of
results as in Experiment 1: The Test Type × Schedule interaction was
significant for generalization versus detailed recognition, F(1, 17) =
16.36, MSE = 18.22, p = .001, η2p = .49, and for general recognition
versus detailed recognition, F(1, 17)= 47.40,MSE= 26.29, p< .001,
η2p = .74, but not for generalization versus general recognition,
F(1, 17) = 1.47, MSE = .74, p = .242, η2p = .08. Overall, the
significant Test Type × Schedule interactions found across both
Experiments 1 and 2 reveal that different levels of knowledge benefit
from different training schedules.

Interaction Between Sequence and Knowledge Type
Across a 1-Week Delay

The two-way Test Type × Session interaction was also signifi-
cant in both Experiment 1, F(1, 14) = 19.75,MSE = 8.27, p < .001,
η2p = .59, and Experiment 2, F(1, 17) = 10.08, MSE = 3.60, p <
.001, η2p = .37, in Session 2. Post hoc tests restricted to two test
types (generalization vs. general recognition, general recognition
vs. detailed recognition, and generalization vs. detailed recogni-
tion) revealed that the Test Type × Session interaction was
significant for generalization versus general recognition in both
Experiment 1, F(1, 14) = 21.59, MSE = 6.29, p < .001, η2p = .61,
and Experiment 2, F(1, 17) = 11.26, MSE = 4.05, p = .004, η2p =
.40. The differences in retention for generalization versus general
recognition are being driven by the fact that general recognition
suffers much greater performance declines over time relative to
generalization performance, which is relatively stable.

The Test Type × Session interaction was also observed for
generalization versus detailed recognition in both Experiment 1,
F(1, 14) = 40.00,MSE = 16.21, p < .001, η2p = .74, and Experiment
2, F(1, 17)= 16.72,MSE= 6.47, p= .001, η2p = .50. This interaction
is driven by the fact that detailed recognition suffers large
performance declines after a 1-week delay, whereas generalization
performance is more stable. The Test Type × Schedule interaction
was not significant for general recognition versus detailed
recognition, as both tests show performance declines after 1
week in Experiment 1, F(1, 14) = 4.12,MSE = 2.30, p = .062, η2p =
.23, and Experiment 2, F(1, 17) = .86, MSE = .28, p = .365, η2p =
.05. Collectively, the Test Type × Session interactions found
across Experiments 1 and 2 suggest that while memory processes
(general recognition and detailed recognition) show performance
decrements after a delay, general category knowledge (category
induction) is much more stable.

Replicated Interaction Between Learning Sequences and
Knowledge Specificity

To address possible concerns related to the small sample sizes (N=
15 in Experiment 1 and N = 18 in Experiment 2) used in the previous
analyses of implied interactions between learning sequence and our
three measures of knowledge specificity, we analyzed an additional
data set that was collected as part of another study as a replication
analysis for the Test Type × Session interaction. The data set was
collected from a single session and used six (instead of 12) artist
categories. In this study, the assignment of participants to the learning
schedule was a between-participant factor, so 52 participants learned
about the artists in a blocked order, and 48 participants were assigned
to the interleaved condition. Both participant groups completed the
same induction and sourcememory tests, as described in Experiments
1 and 2. Detailedmethods can be found in the SupplementalMaterial.
Critically, no performance-based exclusion criteria were applied to
the data, as this version of the experiment did not have an appropriate
way to exclude based on overall performance regardless of learning
condition (due to the learning sequence manipulation being between
participants) nor did it have a retention component to assess.

We conducted a 3 (Test Type: Generalization,General Recognition,
Detailed Recognition) × 2 (Schedule) mixed ANOVA. This analysis
replicated the Test Type × Schedule interaction observed in
Experiments 1 and 2 of the present study, F(2, 196) = 18.075,
MSE = 0.502, p < .001, η2p = .16. Post hoc tests restricted to two test
types (generalization vs. general recognition, general recognition vs.
detailed recognition, and generalization vs. detailed recognition)
revealed that the Test Type × Schedule interaction was significant for
generalization versus detailed recognition, F(1, 98) = 37.79, MSE =
.896, p < .001, η2p = .27, and for general recognition versus detailed
recognition, F(1, 98) = 18.72, MSE = .575, p < .001, η2p = .16. This
interaction is driven by the fact that detailed recognition benefitted
from a blocked training schedule, whereas general recognition and
generalization benefitted from an interleaved schedule. The Test
Type × Schedule interaction was not significant for generalization
versus general recognition, as both tests showed an interleaving
benefit, F(1, 98) = 1.23, MSE = 0.035, p = .272, η2p = .012. Thus,
we were able to replicate the same pattern of results that we found
in Experiments 1 and 2 with respect to the effects of sequencing on
different levels of knowledge using an independent data set even when
the learning sequence was manipulated between subjects.
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General Discussion

Here, we demonstrate that, when learning natural categories, the
acquisition of category-defining features and episodic details benefits
from different sequences. Our study design assesses the acquisition
and retention of both category knowledge and recognition memory
acquired from the same learning experience and quantifies the
interaction between sequence and knowledge specificity. While
category generalization and general recognition memory benefitted
from interleaving, highly detailed memory about individual trai-
ning episodes (i.e., painting locations) benefitted from blocking.
Additionally, we found retention differences in knowledge specific-
ity: While category generalization is largely retained, both general
and detailed recognition memory suffer greater losses with time.
Our generalization results align with prior research demonstrating

an interleaving benefit for natural categories (for a meta-analysis, see
Brunmair & Richter, 2019). Our generalization results corroborate
claims that interleaving facilitates the encoding of features that
differentiate categories (Birnbaum et al., 2013; Carvalho &
Goldstone, 2015; Kang & Pashler, 2012; Kornell & Bjork, 2008).
Such discriminative contrast may be particularly important when
artists have similar styles, consistent with work demonstrating
interleaving benefits when there is high between-category similarity
(Carvalho & Goldstone, 2014).
For instance, while differentiating aMichelangelo painting from a

Picasso may be easy given their dramatically different artistic styles,
discerning Michelangelo’s work from those of other Renaissance
painters like Raphael is more challenging. Because our task used
landscape artists, most of whom used an impressionistic style, our
categories likely had high perceptual overlap and between-category
similarity. By highlighting discriminative category features,
interleaving may reduce ambiguity between artists with similar
painting styles and facilitate category generalization.
Reducing episodic ambiguity, however, may require contrasting

features different from those used for categorical judgments. For
example, an art student’s ability to recognize the Doni Tondo as a
painting by Michelangelo would not necessarily help her remember
that the Doni Tondo is located in the Uffizi Gallery. Our data
indicate that for those who successfully learned the painting–
location associations, recalling individual painting locations benefits
from blocking. By extension, remembering that the Doni Tondo is
located in Florence, while the Entombment is located in London,
may benefit from learning these facts juxtaposed (blocked) rather
than separated by time (interleaved). Seeing the two Michelangelo
paintings in close proximity may support the encoding of details that
differentiate the two paintings, thus supporting superior recognition.
Consistent with this idea, work in human memory has shown that

high event similarity triggers adaptive “repulsion” mechanisms,
which bias neural codes to store more differentiated representations
to reduce memory interference and improve accuracy (Chanales et
al., 2017, 2021; Favila et al., 2016). One intriguing possibility is that
enhanced discrimination of episodic details may come at a cost to
acquiring general category knowledge. While our study was not
designed to quantify trade-offs between acquiring different types of
knowledge, these interactions could be examined in future studies.
Our results also introduced interesting nuances with respect to

blocked versus interleaved benefits across different levels of
knowledge specificity. For instance, our general and detailed
recognition tests are both tests of episodic source memory, yet

each benefitted from different learning schedules. General (but not
detailed) recognition benefitted from interleaving, similar to the
generalization test. One interpretation, based on our local discrimi-
nation framework, might explain why only detailed recognition
showed blocking benefits. In our task, each trial consisted of three
components: an artist name, painting, and location. In a blocked
sequence, only two components (painting and location) differed
between trials, as the artist was the same across the 30 consecutive
trials within a single artist’s block.

If learners are naturally inclined to discriminate between successive
trials and/or similar episodes (consistent with local discrimination),
learners would be biased to encode differences between successive
trials (paintings and locations), rather than similarities (artist name).
This bias would lead to superior performance in detailed recognition,
which directly tested the painting–location association. On the other
hand, in an interleaved sequence, all three components (an artist
name, painting, and location) varied from trial to trial, as paintings
from different artists were presented in sequence. Given we provided
explicit instructions that emphasized the importance of the artist’s
name (e.g., the goal was to learn each artist’s style), it is reasonable to
assume that learners prioritized learning of the artist information. As a
result, both generalization (which tested category knowledge of
artists’ painting style) and general recognition (which tested the
mapping of artist names to locations) may have benefitted from
interleaved training, which contained variable artist information
across trials. Because artist information does not vary across trials in
the blocked condition, it may be difficult to override the natural bias to
encode trial-by-trial differences (e.g., painting–location information)
despite explicit instruction to prioritize the artist information.

Our results may appear to run counter to a popular sequencing
theory referred to as the sequential attention theory of categorization
(Carvalho & Goldstone, 2017). This theory posits that blocking
highlights within-category similarities, whereas interleaving empha-
sizes between-category differences. Strict application of this theory
might predict blocking would bias learners in our task to encode
similarities across episodes and impair detailed recognition, as no
distinct episodic details would be encoded during the study. Yet our
results show that blocking showed superior detailed recognition
performance (in those who demonstrated incidental encoding of
episodic details), whichwould not occur if participants were encoding
within-category similarities during learning. However, our study
differs from those validating the sequential attention theory in
that there were potentially competing learning objectives: While
participants were instructed to learn category-level information,
learners were also presented with additional episodic details that
could compete with the encoding of goal-relevant features. When
faced with a problem that does not have competing information, the
sequential attention theory may hold true because learners apply
strategies consistent with the learning objective and selectively attend
to goal-relevant features (e.g., “these items belong to the same
category so I should identify their similarities”).

While our instructions emphasized learning at the category level,
our task was designed to assess incidental learning of episodic details.
When examining individuals who show reliable learning of detailed
episodic information, we saw that blocking enhanced differentiation
of highly similar exemplars (i.e., paintings from the same artist).
Although the blocking benefit was observed in a subset of the original
sample (in Experiment 1) who showed evidence of learning above
chance, this effect was replicated across three independent data sets
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(Experiment 1, Experiment 2, and Supplemental Material online
methods), suggesting that the incidental learning of episodic details
appears to benefit from blocking.
When interpreting our results, it is important to consider

interactions between sequencing and spacing effects in memory
(Bjork et al., 2013; Cepeda et al., 2008). Earlier studies referred to
interleaving as “spaced” and blocking as “massed” learning (Kornell
& Bjork, 2008; Kornell et al., 2010; Kang & Pashler, 2012),
but recent distinctions disambiguate the terms such that “massing”
and “spacing” refer to temporal learning manipulations, whereas
“blocking” and “interleaving” refer to the sequence or arrangement
of learning materials. Blocking/interleaving typically applies to
category learning problems, where materials can be grouped by
(blocked) or mixed across (interleaved) different categories
(Brunmair & Richter, 2019; Dunlosky et al., 2013). Temporal
(e.g., “spacing”) and sequencing (e.g., “interleaving”) manipula-
tions often covary (i.e., interleaved category exemplars are spaced in
time, whereas blocked category exemplars are massed) and likely
interact to influence learning.
In this study, blocking/interleaving was applied at the category

level, consistent with prior work using similar designs (Kornell &
Bjork, 2008; Kornell et al., 2010). As such, the sequence
manipulation also covaried with massed/spaced practice: Blocked
paintings were massed within that artist’s temporal block and never
revisited, whereas interleaved artists were spaced out and revisited
(albeit with different exemplars) throughout the experiment. While
interactions between temporal and sequencing dynamics were
outside the scope of this article, our task design is similar to those
who have directly examined interactions between spacing and
sequencing of categories (Birnbaum et al., 2013; Kang & Pashler,
2012). Based on those prior studies, we believe the interleaving
benefit in category generalization is largely driven by discriminative
contrast, rather than spacing. Nonetheless, spacing and sequen-
cing may interact differently across our three tests of knowledge
specificity. To our knowledge, the interactions between spacing
and sequencing have not been systematically examined in episodic
memory and thus warrant further investigation.
In our task, unique trials were equally spaced, regardless of

sequence. At the exemplar level, each exemplar was spaced
similarly across repetitions (roughly once every six trials) regardless
of the sequence (blocking/interleaving). In fact, the exemplar-level
sequence only differed in that adjacent exemplars were from the
same (blocked) or different (interleaved) categories. The consistent
spacing of individual exemplars highlights how same- versus
different-category comparisons between adjacent episodes can
dramatically change the features extracted from those individual
events. By juxtaposing items from the same category, blocking may
bias learners to encode subtle within-category differences between
similar episodes and improve detailed recognition.
On the other hand, general recognition memory benefitted from

interleaving. We provided one possible account for this difference:
Blocking varied painting–location information, causing learners to
ignore the invariant artist information necessary for successful
general recognition performance. Another account may be that
temporal spacing reduces memory interference between episodes
that share overlapping information (Noh et al., 2023; Schlichting
et al., 2015) by separating competing information across time.
While temporal spacing might improve general recognition

by reducing memory interference, spacing may be insufficient at

resolving memory interference for detailed recognition. Adding
temporal spacing between exemplars has been shown to eliminate
the interleaving benefit for category generalization by disrupting
discriminative-contrast processes (Birnbaum et al., 2013; Kang &
Pashler, 2012). Temporal spacing might similarly eliminate the
blocking benefit for detailed episodic memory by making it harder
to recall specific details that differentiate each painting. Thus, our
findings provide a novel contribution to the memory literature by
demonstrating how different sequences can be used as a learning
tool to enhance memory for episodes that may otherwise be
vulnerable to memory interference. The interactions between spacing
and sequencing could benefit from further investigation, both in the
domain of concept learning andmemory. For instance, one interesting
avenue of research could be to consider how blocked categories might
benefit from repeated spaced practice (e.g., revisiting/repeating
blocked exemplars after studying other categories).

It is also important to recognize that factors other than
discriminability might influence optimal learning sequences.
Studies have shown that the best sequence for learning can vary
based on multiple factors such as category structure (Noh et al.,
2016), training (active vs. passive) format (Carvalho & Goldstone,
2015), learning problem (Flesch et al., 2018, 2023), serial position
effects (Ge et al., 2021), representational goals (Schlichting et al.,
2015; Zhou et al., 2023), or alignment between task instructions and
goals (Abel, Brunmair, et al., 2021; Abel, 2024; Abel, Niedling,
et al., 2021; Miyatsu et al., 2020; Noh et al., 2014). While some
factors such as active versus passive learning format are likely to
have relatively minor influences on our results (e.g., our active
learning manipulation may have exaggerated the interleaving
benefit seen in generalization), others may have had a larger role in
contributing to our findings. While our study was not designed to
test these other variables, we acknowledge that discriminability
alone may not fully explain our results.

For instance, the present study did not account for primacy and/or
recency effects (Gershberg & Shimamura, 1994; Helstrup, 1979) on
memory performance nor did we control for differences in between-
and within-category transitions, which may differ in the potential
to perform discriminative contrast across learning episodes.
Specifically, it is possible that serial position effects may bias
encoding for the first and last categories studied in a blocked fashion,
whereas no such bias exists in the interleaved categories, which are
intermixed throughout the experiment. Relatedly, another contribut-
ing factor to the interleaving benefit may be that interleaving allows
for better sampling of the range of the stimulus space, whereas the
first category in a blocked sequence would not provide adequate
information about the range of stimuli and features that make up
the problem space. Additionally, it is possible that interleaving
improves category generalization not necessarily because it enhances
between-category discriminability, but simply because there are more
category-level transitions relative to blocking (during which there is a
transition only when moving from one category block to the next),
which provide more opportunities to compare and contrast at the
category level. Future study designs should provide better controls
and interpretations for these inherent variances that exist in many
blocked/interleaved category designs to better isolate the mechanisms
that drive sequencing effects.

Finally, our results also revealed differences in the retention of
knowledge across different levels of specificity. We found that
categorization performance is largely retained over time, whereas
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episodic details are forgotten (Brainerd & Reyna, 1990, 1998;
Sekeres et al., 2016). The comparison between category generali-
zation and general recognition in Experiment 2 best illustrates
this dissociation between how different levels of knowledge are
retained (Figure 4). On the immediate test, participants show similar
performance levels in generalization and general recognition.
However, after a delay, general recognition suffers sharp perfor-
mance declines, whereas generalization shows minimal decrements.
These findings suggest a dissociation between the mechanisms that
support generalization and episodic memory. Future studies could
examine the neural mechanisms associated with acquiring and
retaining general versus detailed knowledge to better assess this
possibility.
Our study holds significant practical implications, particularly in

academic settings. In real-world learning scenarios, there are times
when the learning objective is to master general concepts and others
when it is necessary to memorize specific details. Although learners
typically prefer structured studymethods such as grouping (blocking)
learningmaterials by concept (Bjork et al., 2013; Tauber et al., 2013),
our findings suggest that learners should strategically sequence their
learning to effectively enhance the type of knowledge (e.g., general
vs. specific) consistent with one’s learning goal (e.g., mastering
concepts vs. memory). We designed our task to mimic naturalistic
learning by combining multiple stimuli on each trial to create learning
episodes composed of multiple features, which allowed learners to
acquire episodic details and conceptual knowledge simultaneously.
Our approach reveals how different types of knowledge are acquired
and retained and suggests that learning can be optimized through
training regimes that emphasize discrimination at varying levels of
specificity.
While interleaving benefits (e.g., “distributed practice”) are

increasingly being examined in classroom settings (Agarwal &
Agostinelli, 2020; Hartwig et al., 2022; Hopkins et al., 2016; Samani
& Pan, 2021; Sana & Yan, 2022), these studies measure conceptual
mastery, as the goal of most courses is conceptual understanding
rather than rote memorization. In real-world contexts, however,
there are many cases when one should remember specific episodic
details. For example, a lawyer may need to differentiate between
similar witness accounts to accurately attribute the unique details
provided by each witness to prepare his case. Or perhaps you meet a
close friend’s extended family and want to remember each person’s
name for when you see them again. Our findings suggest that
sequencing can be used as a learning tool to highlight discriminative
features depending on one’s learning goals.
In summary, our results demonstrate how different levels of

knowledge specificity are optimally acquired and retained over time,
and how different learning conditions are beneficial for improving
specific outcomes: Interleaving improves more general knowledge,
such as general recognition memory and category knowledge,
whereas blocking enhances discrimination between same-category
exemplars. Our results highlight the importance of discrimination as a
general learning principle for both learning and memory and show
how local discrimination can promote differentiation atmultiple levels
of specificity. Furthermore, we found that while category generaliza-
tion is largely preserved over time, episodicmemory content is mostly
lost after a delay. These results illustrate the importance of leveraging
the appropriate learning strategies that enhance performance and
knowledge retention for various tasks.
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