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Abstract

■ Events with overlapping elements can be encoded as two sep-
arate representations or linked into an integrated representation,
yet we know little about the conditions that promote one form of
representation over the other. Here, we tested the hypothesis
that the proximity of overlapping events would increase the prob-
ability of integration. Participants first established memories for
house–object and face–object pairs; half of the pairs were learned
24 hr before an fMRI session, and the other half 30 min before the
session. During scanning, participants encoded object–object
pairs that overlapped with the initial pairs acquired on the same
or prior day. Participants were also scanned as they made infer-
ence judgments about the relationships among overlapping pairs
learned on the same or different day. Participants were more ac-
curate and faster when inferring relationships among memories
learned on the same day relative to those acquired across days,

suggesting that temporal proximity promotes integration.
Evidence for reactivation of existing memories—as measured by
a visual content classifier—was equivalent during encoding of
overlapping pairs from the two temporal conditions. In contrast,
evidence for integration—as measured by a mnemonic strategy
classifier from an independent study [Richter, F. R., Chanales,
A. J. H., & Kuhl, B. A. Predicting the integration of overlapping
memories by decoding mnemonic processing states during learn-
ing. Neuroimage, 124, 323–335, 2016]—was greater for same-day
overlapping events, paralleling the behavioral results. During
inference itself, activation patterns further differentiated when
participants were making inferences about events acquired on
the same day versus across days. These findings indicate that
temporal proximity of events promotes integration and further
influences the neural mechanisms engaged during inference. ■

INTRODUCTION

Events often overlap with one another, sharing content
such as people, places, and objects. Overlapping event
content may promote interactions among memories trig-
gering one of two mechanisms that determine how new
information is represented with respect to existing
knowledge. In one case, overlapping content may serve as
a retrieval cue to reactivate related memories (Zeithamova,
Dominick, & Preston, 2012). The new event and reactivated
knowledge may then be represented by overlapping neural
populations, leading to the formation of an integratedmem-
ory representation that links related events (Schlichting,
Zeithamova, & Preston, 2014; Zeithamova, Dominick,
et al., 2012; Zeithamova & Preston, 2010; Shohamy &
Wagner, 2008; Eichenbaum, 1999). Such integrated memo-
ries can support novel decisions, such as inference, by com-
bining knowledge from events experienced at different
times (Schlichting, Mumford, & Preston, 2015; Schlichting
et al., 2014; Zeithamova & Preston, 2010; Shohamy &
Wagner, 2008). In contrast to this integration mechanism,
some theoretical models emphasize that overlapping events
are represented by distinct or pattern-separated neural pop-
ulations to minimize interference among similar memories

(Kumaran, Hassabis, & McClelland, 2016; O’Reilly & Rudy,
2000; McClelland, McNaughton, &O’Reilly, 1995). Empirical
data provide evidence for both representational strategies;
yet, little is known about factors that promote one mecha-
nism versus another. Here, we test the hypothesis that the
temporal proximity of events influences whether overlap-
ping experiences are integrated or separated.

Recent data have shown that events close together in
time demonstrate more similar representations in the
hippocampus, amygdala, and pFC than events separated
by longer delays (Cai et al., 2016; Rashid et al., 2016; Ezzyat
& Davachi, 2014; Hsieh, Gruber, Jenkins, & Ranganath,
2014). For example, distinct spatial contexts experienced
within the same day are represented by a highly overlap-
ping population of neurons within the CA1 subregion of
the hippocampus (Cai et al., 2016). Such integrated repre-
sentations lead to the generalization of fear responses from
one spatial context to another. However, when spatial
contexts are experienced 1 week apart, distinct popula-
tions of CA1 cells represent the two contexts, and the
generalization of fear across contexts does not occur.
These findings suggest that temporal proximity may be a
key factor that promotes integration.

Temporal proximity may drive integration through a
memory tagging and allocation mechanism, whereby
neurons and synapses recruited to represent a recent ep-
isode are more readily engaged for new events that occur1University of Oregon, 2University of Texas at Austin
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within hours of the original episode (Cai et al., 2016;
Rashid et al., 2016; Silva, Zhou, Rogerson, Shobe, &
Balaji, 2009). Recruitment of the same neural ensembles
through tagging and allocation thus results in overlap-
ping population codes for temporally proximal events.
At the cognitive level, a similar idea has been expressed
by the temporal context model (Howard & Kahana,
2002), which proposes that temporally proximal events
are linked by shared context information. Even when
events are separated in time, this model suggests that
overlapping memory content may serve to reinstate a pri-
or temporal context, leading to the integration of tempo-
rally distant events (Howard, Jing, Rao, Provyn, & Datey,
2009). However, it remains an open question how tem-
poral distance constrains the likelihood of memory rein-
statement and integration.

Existing research suggests that reactivation of a stored
memory may increase its malleability and allow for mem-
ory updating (Bridge & Voss, 2014; Diekelmann, Büchel,
Born, & Rasch, 2011; Hupbach, Hardt, Gomez, & Nadel,
2008), even when the memory is a day or more old
(Rashid et al., 2016; Hupbach et al., 2008). In contrast,
the memory tagging and allocation hypothesis (Cai
et al., 2016; Rashid et al., 2016; Silva et al., 2009) pro-
poses that recent memories are more likely to be rein-
stated than temporally distant events, which would
result in integration only for temporally proximal events.
Furthermore, remote memories that have been stabilized
through consolidation are thought to be less susceptible
to modification (Frankland & Bontempi, 2005; Squire &
Alvarez, 1995). Therefore, even if events encountered on
prior days are reactivated during new encoding, a sepa-
rate memory may be formed for the new information.
Here, our goal was to test how the temporal proximity
of events impacts reinstatement of prior related memo-
ries and integration across events.

Participants underwent fMRI while encoding object
pairs that overlapped with previously learned associa-
tions. Half of the pairs overlapped with memories
(face–object and house–object pairs) acquired on the
previous day, whereas the other half overlapped with
memories (a different set of face–object and house–
object pairs) acquired within the same experimental ses-
sion. We predicted that unseen, related memory content
(face, house) would be more likely to be reactivated and
integrated for the same-day than prior-day memories. To
test the reactivation hypothesis, participants were also
scanned while they viewed individual images of objects,
faces, and houses during a functional localizer. Data from
this localizer were used to train a multivoxel pattern clas-
sifier to differentiate the visual content from individual
participants’ ventral visual cortex activation patterns;
the trained classifier was then applied to the overlapping
object pair encoding data to estimate the degree of evi-
dence for reactivation of related face or house informa-
tion. These reactivation estimates were then compared
for events that overlapped with information acquired

on the same day and events that overlapped with mem-
ories acquired on the prior day.
We assessed how temporal proximity impactedwhether

participants integrated overlapping events neurally as well
as behaviorally. Behaviorally, we assessed the ease of link-
ing information across related events by having partici-
pants perform an inference task, in which they were
asked to make judgments about the indirectly related
elements of two overlapping pairs. Our prior work has
shown that reactivation and integration of prior memories
with new content facilitates inference (Schlichting et al.,
2014; Zeithamova, Dominick, et al., 2012). Here, we
tested the hypothesis that inference would be superior
for overlapping events experienced on the same day
because of the increased likelihood of integration.
Neurally, we employed a multivariate classification

approach to index the degree of integration during
encoding of overlapping events, as opposed to simply
retrieving old information or encoding the new associa-
tions without reference to existing memories. We hy-
pothesized that overlapping events from the same-day
condition would be more likely to be associated with
an integration strategy. This multivariate approach was
based on a neural classifier from an independent study,
which demonstrated that the process of memory integra-
tion evokes a neutrally distinct signature across the whole
brain that can be differentiated from simple retrieval or
encoding strategies (Richter, Chanales, & Kuhl, 2016).
Specifically, Richter and colleagues presented partici-

pants with events that overlapped with previously learned
associations, using a paradigm similar to this study. In the
first experiment, participants were instructed during over-
lapping event encoding to use one of three strategies:
retrieve the prior association without encoding the new
one, encode the new information without reference to
the prior association, or integrate the new association with
the prior association. A neural classifier trained on normal-
ized, whole-brain activation patterns was able to discrimi-
nate the three memory strategies—retrieve, encode,
integrate—fromone another on a trial-by-trial basis (Richter
et al., 2016). Importantly, the mnemonic strategy classifier
trained on the group of participants given explicit strategic
instructions was then applied to a new set of participants
whowere not given explicit strategy cues. The classifier suc-
cessfully predicted spontaneous integration in this inde-
pendent group of participants. In this study, we used the
whole-brain, across-participant mnemonic classifier trained
on data fromRichter et al. (2016) to test our hypothesis that
temporally proximal events, that is, those encoded within
the same day, would show greater evidence of memory
integration.
A final goal of our study was to determine whether the

temporal proximity of events impacts the processes
brought to bear as participants make inferences about their
relationships. To this end, we also scanned participants
as they completed the inference task for which they made
novel decisions about the relationships among overlapping
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events. Memory integration during encoding has been
shown to promote novel inference (Schlichting et al.,
2014; Zeithamova, Dominick, et al., 2012; Shohamy &
Wagner, 2008). However, successful inference may also
be achieved through retrieval and joint consideration of
pattern separated memories (Kumaran et al., 2016;
Zeithamova & Preston, 2010; Greene, Gross, Elsinger, &
Rao, 2006; Preston, Shrager, Dudukovic, & Gabrieli,
2004), albeit at the cost of increased RT and decreased
accuracy (Schlichting et al., 2014, 2015). We hypothesized
that the inference strategies may differ depending on
whether an integrated memory has been already formed
during encoding. Behaviorally, we predicted that
participants would be faster and more accurate when
making inferences involving same-day than prior-day
events because of enhanced integration of same-day
events during encoding. Neurally, we predicted that
activation patterns during novel inferences would differ for
the same-day and prior-day conditions, presumably
reflecting relative reliance on different inference strategies
(retrieval and recombination of separate memories vs.
retrieval of integratedmemories) across the two conditions.
Unlike the hypotheses formulated for reactivation and
integration during encoding, we did not have independent
data for training of a neural classifier to differentiate
between the hypothesized processes during inference.
We thus employed a cross-validation approach in which a
neural classifier was trained to discriminate whole-brain

activation patterns for inference trials from the two condi-
tions on a within-participant basis.

METHODS

Participants

Thirty-four young adults (age 18–34 years, mean =
23 years; 18 women) participated in the experiment after
giving an informed consent in accordance with the Uni-
versity of Texas at Austin institutional review board
policy. Two participants did not complete the scanned
portion of the experiment, one because of scanner failure
and one because of failure to learn the paired associates
during the training before scanning. Data from three
additional participants were excluded from analysis
because of incorrect slice prescription (1), loss of behav-
ioral responses (1), and failure to follow task instructions
(1). Data from the remaining 29 participants were used in
the final analyses.

Procedures

Stimuli were grayscale images of faces (F), houses (H), and
common objects (O). Images were organized into triads
consisting of either a face and two objects (60 face–
object–object triads) or a house and two objects (60 house–
object–object). Stimuli from each triad were presented
as two overlapping paired associates (Figure 1). Initial

Figure 1. Schematic of study design and behavioral results. (A) Session 1: Training on prior-day initial pairs. One day before scanning, participants
were trained on 30 face–object and 30 house–object pairs across three study–test repetitions (test not depicted). (B–D) Session 2 on the
following day had three successive phases: (B) Training of same-day initial pairs. Participants were trained outside scanner on a novel set of
30 face–object and 30 house–object pairs across three study–test repetitions (test not depicted). (C) Encoding of overlapping pairs. During slow
event-related scanning, participants encoded 120 object–object pairs. One object from each pair was novel and one was encountered previously
during prior-day initial training (blue arrow) or same-day initial training (green arrow). (D) Inference test. During slow event-related scanning,
participants were given a surprise test of 120 relationships that required linking information across events. Their task was to infer which house or face
was indirectly related to objects that shared a common associate. Half of the faces and half of the houses were encountered on prior day
(blue arrow) and the other half on the same day (green arrow). No explicit cues distinguished inference trials from the two temporal conditions
during the test phase, nor were participants required to retrieve whether the stimuli were experienced on the same or different day. All tests
consisted of two-alternative forced-choice judgments with the foil stimuli always of the same type and condition as the correct choice. (E) Inference
accuracy split by the two temporal conditions, prior day (blue bar) or same day (green bar). (F) Median RTs for correct inferences for the two
conditions. Error bars denote across-participant standard error. In E & F, asterisk (*) denotes a significant difference between conditions
(paired t-test p < 0.05).

Zeithamova and Preston 1313



associations, referred to as AB pairs, consisted of a face
or a house (the “A” item) paired with an object (the
“B” item). Overlapping associations, referred to as BC
pairs, consisted of the same B objects now paired with
novel objects (the “C” items).

The experiment took place over two sessions, approx-
imately 24 hr apart (Figure 1). During Session 1 (not
scanned; Figure 1A), participants learned half of the ini-
tial pairs (30 face–object and 30 house–object) across
three study–test repetitions (hereafter referred to as
“prior-day” pairs). During Session 2, participants learned
the remaining set of initial pairs (“same-day” pairs:
30 new face–object and 30 new house–object) over three
study–test repetitions, 30–60 min before scanning
(Figure 1B). For each AB study trial, a pair of stimuli
was presented for 3.6 sec followed by a 0.4-sec fixation.
The left–right position of the two items was randomized.
During each AB test trial, one stimulus of a pair was pre-
sented on the top of the screen (e.g., A cue) and two
choice stimuli were presented on the bottom of the
screen (e.g., a correct B and a foil B from a different
AB pair). On each test trial, the foil stimulus was con-
strained to match the type and condition of the correct
stimulus. In other words, if A was a male face from a face–
object–object triad, then the B foil was an object paired
with a different male face during the same training ses-
sion. Each AB test trial was equally likely to be cued by
the A stimulus or the B stimulus. The correct choice
was presented on the left or right position with equal
probability. Each test trial lasted for 3.6 sec during which
time the participant indicated whether the left or right
choice stimulus was paired with the cue stimulus. Each
test trial was followed by a 0.4-sec fixation. AB training
lasted about a half an hour on each day.

The second phase of Session 2 consisted of scanned
encoding of the 120 overlapping object–object (BC) pairs
(Figure 1C). Each overlapping pair was studied only
once, with half of the BC associates overlapping with
prior-day AB pairs and the other half overlapping with
same-day AB pairs. On each BC study trial, a pair of ob-
jects was presented for 3.6 sec followed by 8.4-sec fixation
baseline for a total of 12 sec per trial. BC encoding oc-
curred across three fMRI runs, each lasting 8 min. All triad
types were balanced across runs, that is, the BC pairs over-
lapping with AB pairs from a different temporal condition
(prior day, same day) and associated with different stim-
ulus content (faces, houses) were evenly distributed
across the runs. Presentation order of the pairs within a
run was randomized. Participants were not explicitly
informed about the overlap between pairs they learned
previously and the new pairs, nor were they asked to re-
trieve the prior AB associates. Instead, participants were
informed that they would be challenged to learn associa-
tions in a single trial, as opposed to the three trial learning
they had previously experienced.

Following the encoding of overlapping events, par-
ticipants were given a surprise AC inference test that

required them to relate elements across overlapping
pairs (Figure 1D). For the face–object–object triads, par-
ticipants were told that they had initially seen a person
(the A image) owning an object (the B image). Later, they
saw the same object (B) paired with another object (C).
From these pairings, participants were told that they
could infer that the second (C) object must also belong
to the same person (A). A similar explanation was given
for the house–object–object triads, wherein participants
were told they could infer that C items could be found in
the same house (A) as their corresponding B associate.
We refer to this test as “AC test” or “inference test” as
participants needed to infer a relationship between two
items (A and C) that were never presented together
but were both related to a common associate (the B ele-
ment). Participants performed the surprise test for 120
inferential AC relationships during fMRI scanning. On
each AC inference trial, one stimulus (e.g., a C object)
served as a cue presented on the top of the screen,
and two choice stimuli (e.g., correct A and a foil A from
a different triad) were presented on the bottom of the
screen. The foil stimulus was constrained to match the
triad type of the correct stimulus. Each AC trial was
equally likely to be cued by the A stimulus or the C stim-
ulus. On each trial, the cue and choice stimuli were pre-
sented for 3.6 sec followed by 8.4-sec fixation baseline for
a total of 12 sec per trial. Inference testing occurred across
three fMRI runs, each lasting 8 min, with a balanced dis-
tribution of triad types (inferences involving a face or
house from the same-day and prior-day conditions). Pre-
sentation order within each run was randomized.
After the completion of the inference test, participants

underwent testing for their memory of the initial (AB)
and overlapping (BC) pairs (not scanned). The test proce-
dure was the same as in previous phases, except that trials
lasted 4 sec (a combined 3.6-sec stimulus and response pe-
riod, 0.4-sec fixation). BC pairs were tested before AB pairs.
Session 2 concluded with the collection of two ana-

tomical scans (see MRI Data Acquisition) followed by a
functional localizer task used for the training of a visual
content classifier based on multivoxel pattern analysis
(MVPA). During the localizer, participants viewed individ-
ual objects, faces, and houses in a blocked design, using
different stimuli from those presented during the associa-
tive inference task. Each block consisted of successive
presentation of nine stimuli (2 sec each). Participants
performed a 1-back working memory task, in which they
pressed a button whenever the current stimulus was a
repetition of the one immediately preceding. Within each
block, there were one or two stimulus repeats. The order
of face, object, and house blocks was counterbalanced
within and across participants. In total, there were three
localizer runs, each lasting 8 min.

MRI Data Acquisition

Whole-brain imaging data were acquired on a 3.0-T GE
Signa MRI system (GE Medical Systems, Milwaukee, WI).
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Functional images were acquired using a multiecho
GRAPPA parallel EPI sequence with thirty-one 3-mm-
thick oblique axial slices (0.6 mm gap), 20° off the AC–
PC line (repetition time = 2 sec, echo time = 30 msec,
2 shot, flip angle = 90°, 64 × 64 matrix, 3.75 × 3.75 mm
in-plane resolution, interleaved slice acquisition). For
each functional scan, the first six EPI volumes were dis-
carded to allow for T1 stabilization. Head movement was
minimized using foam padding. Two structural im-
ages were collected: a T2-weighted flow-compensated
spin-echo pulse sequence with the same slice prescrip-
tion as the functional images (repetition time = 3 sec,
echo time = 68 msec, 256 × 256 matrix, 1 × 1 mm in-
plane resolution), and a high-resolution T1-weighted
SPGR scan was acquired in the sagittal plane using a
1.3-mm slice thickness with 1-mm2 in-plane resolution.

Preprocessing of fMRI Data

Data were preprocessed and analyzed using SPM5 (Wellcome
Department of Cognitive Neurology, London, UK) and
custom MATLAB (The MathWorks, Natick, MA) routines.
Functional images were realigned to the first volume in the
time series to correct for motion and coregistered to the
T2-weighted structural image. The T2-weighted structural
image was coregistered to the high-resolution SPGR, and
the coregistration parameters were then applied to the func-
tional images. Finally, the functional images were high-pass
filtered with a 128-sec filter and converted to percent signal.
The majority of analyses were performed in the native

space of each participant without spatial smoothing. The
exception was an analysis for which we assessed memory
strategy during overlapping event (BC) encoding by ap-
plying the neural classifier from Richter et al. (2016; see
below). Because this analysis used a classifier trained on
whole-brain, Montreal Neurological Institute (MNI) nor-
malized data from a different group of participants col-
lected in a different lab (Richter et al., 2016), data from
each participant in this study were normalized into MNI
standard space using ANTs (Advanced Normalization
Tools; picsl.upenn.edu/software/ants/). First, ANTs was
used to compute coregistration parameters from each
participant’s reference functional volume (first BOLD im-
age from first run) to their high-resolution T1 anatomy
using a rigid affine transformation. Next, each participant’s
T1 anatomical scan was normalized to a standard 2-mm
MNI anatomical template using a diffeomorphic transfor-
mation. The transformation parameters were concatenated
and applied to the functional data from the overlapping
(BC) encoding phase. Finally, the normalized patterns
were smoothed with an 8-mm FWHM kernel.

Decoding Reactivation of Prior Related Content
during Overlapping Event Encoding

Our prior work (Zeithamova, Dominick, et al., 2012)
showed that memories are reactivated during encoding

of overlapping events, with the degree of reactivation
predicting participants’ ability to subsequently infer novel
relationships among related events. Here, we were inter-
ested in whether reactivation would be modulated as a
function of temporal condition (i.e., prior day, same
day). To test this hypothesis, we first verified that pat-
terns of activation within visually selective ventral tempo-
ral cortex differentiated between viewing of face, house,
and object stimuli during the localizer task.

An anatomical mask of the ventral temporal cortex was
used for this analysis, which consisted of the Freesurfer-
defined inferior temporal cortex, parahippocampal cor-
tex, and the posterior portion of fusiform. Within each
participant, ventral temporal cortex activation patterns
for each timepoint from the localizer were labeled ac-
cording to which stimulus type was being viewed (face,
house, object). To account for the hemodynamic lag,
condition labels were shifted back by two scans (4 sec)
with respect to the functional time series. We then ran
MVPA using the Princeton MVPA toolbox (code.google.
com/p/princeton-mvpa-toolbox/) and custom code for
MATLAB. The visual content classifier was a regularized
logistic regression algorithm (penalty = 50), and we first
used a leave-one-run-out cross-validation procedure to
verify that the classifier could differentiate the visual con-
tent. Two runs from the localizer task were used iterative-
ly for classifier training, and the remaining run was used
to assess generalization performance. The comparison
between the MVPA classifier prediction and the actual
condition on each trial provided the cross-validation ac-
curacy of the classifier. Cross-validated classification accu-
racy was very high for the localizer, averaging 92.2%
correct (SD = 4.9%) across participants.

Next, we turned to estimating the degree of trial-by-trial
reactivation of the previously related stimulus (face or
house) during encoding of overlapping pairs. To obtain
a single activation pattern for every overlapping encoding
trial, we averaged data for three time points, correspond-
ing to activation patterns 4 sec, 6 sec, and 8 sec after the
stimulus onset. Second, we trained the visual content clas-
sifier on all three runs from the functional localizer and
then applied the trained classifier to each BC encoding
trial pattern. The classifier output for each trial pattern
consisted of three numbers representing the similarity
to face, house, and object categories. Our critical compar-
ison was between the face and house outputs, which
would reflect reactivation of the previously related A item
(face or house) during encoding of BC object–object
pairs. Specifically, face and house classifier outputs were
compared between BC trials related to faces (face–object–
object triads) and BC trials related to houses (house–
object–object triads). We also computed trial-by-trial
reactivation estimates by subtracting z-scored face and
house classifier outputs on each trial according to the trial
type (face minus house output for trials in which the un-
seen but related A stimulus was a face, house minus face
output for trials in which related A stimulus was a house).

Zeithamova and Preston 1315



To test whether the degree of reactivation differed for
prior-day events and same-day events, the trial-by-trial
estimates were summed within each temporal condition
and compared using a paired t test.

Decoding Integration during Encoding

We hypothesized that the memory strategy participants
employed while encoding overlapping events might
differ for the same-day and prior-day conditions, with
participants being more likely to employ an integration
strategy as they encoded events that overlapped with
associations acquired on the same day. To assess the
memory strategy participants employed during encoding
of overlapping events from the same-day and prior-day
conditions, we employed a multivariate neural classifier
derived from an independent study by Richter et al.
(2016). We chose to employ an independent neural
classifier from a different data set because it allowed us
to make forward inferences about the strategies
participants spontaneously employed in this study and
whether the strategies differed for our two temporal
conditions.

In the study by Richter et al., participants were pre-
sented with overlapping associations in a similar para-
digm to the present work. On each overlapping event
trial, they were given one of three explicit instructions
for the memory strategy to use to process the overlap-
ping event: (1) retrieve the prior related memory (with-
out encoding the current event), (2) encode the new
event (without reference to the prior memory), or (3) in-
tegrate the new information with their existing memory.
A sparse multinomial logistic regression MVPA classifier
(from Princeton MVPA toolbox) was trained on normal-
ized whole-brain activation patterns from all-but-one par-
ticipant and was then used to predict memory strategy
cued on each trial for the remaining participant. The clas-
sifier’s performance reliably discriminated the three
memory strategies from one another, including on a pair-
wise basis (e.g., integration was separately decoded from
both the simple encoding and retrieval strategies). Im-
portantly, the neural classifier was then applied to data
from a new set of participants from a second experiment,
who were not given explicit task instructions during over-
lapping event encoding. The neural classifier was also
successful at isolating when the new, uninstructed partic-
ipants spontaneously employed an integration strategy
when encoding overlapping events.

Here, we employed the whole-brain mnemonic strate-
gy classifier from Richter et al. (2016) in a similar manner
to the application in their second experiment described
above. Similar to the second experiment in Richter et al.
(2016), our participants were not provided with specific
instructions for how to process the overlapping pairs for
either temporal condition. We applied the trained whole-
brain classifier from Richter et al. (2016) to trial-by-trial

activation patterns (averaged 4–8 sec after stimulus on-
set) from the encoding phase of our experiment. The
output of the mnemonic classifier consisted of three
numbers, indicating the degree of evidence for the three
mnemonic strategies during overlapping event encoding
(retrieve, encode, integrate). To test our hypothesis that
overlapping events experienced on the same day are
more likely to be integrated, we first averaged classifier
evidence for integration separately for same-day condi-
tion trials and prior-day condition trials for each partici-
pant. We then used a paired t test to compare the
integration evidence between temporal conditions.

Decoding Temporal Condition during
Inference Test

We further predicted that inference judgments about
memories acquired on the same day would evoke dis-
tinct neural processes from those required for inference
about memories acquired across days. This prediction
stems from our hypothesis about the strategies brought
to bear during encoding of same-day and prior-day over-
lapping associations. If overlapping pairs from the same-
day condition are more likely to be integrated with
existing memories during encoding, inference could be
supported by retrieval of such an integrated representa-
tion during test. In contrast, if overlapping pairs in the
prior-day condition are more likely to be encoded sepa-
rately from existing memories, we would expect infer-
ence would rely on retrieval and recombination of two
separate representations.
Unlike the two MVPA applications that we used on the

encoding data, we did not have independent data for
classifier training. We thus employed a leave-one-run
cross-validation approach on the inference data to test
whether whole-brain activation patterns differentiate be-
tween the two temporal conditions. Similar to encoding,
we first computed a single pattern for every inference
trial by averaging the three time points from the func-
tional time series collected 4 sec, 6 sec, and 8 sec after
stimulus onset. The resulting inference trial patterns
were labeled based on the day when the corresponding
initial memory was first encountered (prior day, same day).
We implemented a leave-one-run-out cross-validation
analysis within a whole-brain mask using a regularized
logistic regression algorithm implemented in the Princeton
MVPA toolbox to obtain the day classification accuracy
for each participant. A one-sample t test across participants
was used to assess whether classification was significantly
above the chance probability of 0.5 at p < .05. To assess
whether differential neural recruitment in the two tem-
poral conditions aids inference success, we related the
day classification accuracy (i.e., disambiguation of infer-
ences involving prior-day and same-day events) to infer-
ence performance across participants using Pearson’s
correlation.
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Effect of Temporal Condition on Neural
Mechanisms that Support Inference

Inference across events has been shown to involve hip-
pocampal and prefrontal regions (Zeithamova & Preston,
2010). Importantly, their recruitment during inference
may further differ depending on which strategy—retrieval
of integrated representation or retrieval and recombina-
tion of individual memories—is employed to support per-
formance (Preston & Eichenbaum, 2013). Thus, we
further tested whether inference about the relationships
for overlapping pairs from the same-day and prior-day as-
sociations evoke distinct patterns of activation in pFC and
hippocampus. Within pFC, we focused on the inferior
frontal gyrus (IFG) given its role in both memory-based
inference (Zeithamova & Preston, 2010) and temporal
coding (DuBrow & Davachi, 2014; Ezzyat & Davachi,
2014; Jenkins & Ranganath, 2010) and ventromedial
PFC (VMPC) based on its hypothesized role in memory
integration (Schlichting & Preston, 2015; Koscik & Tranel,
2012; Zeithamova, Dominick, et al., 2012; van Kesteren,
Fernandez, Norris, & Hermans, 2010). Because prior stud-
ies have shown functional heterogeneity within IFG in
memory tasks (Schlichting et al., 2015; Raposo, Han, &
Dobbins, 2009; Badre & Wagner, 2007; Dobbins, 2005),
we considered the subregions of the IFG—anterior (pars
orbitalis), middle (pars triangularis) and posterior IFG
(pars opercularis)—separately. To identify these five ROIs
on individual participants, we used FreeSurfer (Martinos
Center for Biomedical Imaging, MGH, Charlestown, MA)
to create a subcortical segmentation and cortical parcella-
tion based on the high-resolution T1 SPGR. We then em-
ployed the same temporal condition classification analysis
as described above, assessing cross-validated perfor-
mance on the inference data within each ROI instead of
the whole-brain mask. As with the whole-brain classifier,
we related the temporal classifier accuracy to inference
performance across participants. To correct for multiple
comparisons across the five regions, we adopted a signif-
icance threshold of p < .01 ( p < .05/5 ROIs, resulting in
Bonferroni-corrected p < .05).
Finally, to assess to what degree themultivariate findings

may be driven by possible differences in the overall re-
sponse magnitude for the two temporal conditions, we
performed a univariate analysis of the inference data under
the assumption of a general linear model. The model con-
sisted of four regressors that separated trials based on the
temporal condition (prior day, same day) and inference
success (correct, incorrect). This model allowed us to test
whether overall activation or the magnitude of success
effects (correct–incorrect difference) differ between the
temporal conditions. Each trial was modeled as a stick func-
tion convolved with a canonical hemodynamic response
function as implemented in SPM5. The model also includ-
ed temporal derivatives for each condition and six motion
parameters as regressors of no interest. Parameter esti-
mates (beta weights) were extracted within each ROI for

each participant and condition. A 2 × 2 repeated-measures
ANOVA was used to quantify the main effects of Temporal
condition (prior day vs. same day), Inference success
(correct vs. incorrect inference), and their interaction.

Summary of Decoding Analyses

To summarize, we used three different MVPA classifiers
to test our hypotheses regarding the effect of temporal
condition on overlapping event encoding and inference.
First, we used a visual content classifier to test the hy-
pothesis that memories acquired within the same day
would be more likely to be reactivated during encoding
of overlapping events relative to memories acquired on a
different day. Second, we used a mnemonic strategy clas-
sifier to test the hypothesis that overlapping events
would be more likely integrated with existing memories
acquired on the same day relative to those experienced
on the prior day. Finally, we used a temporal condition
classifier on the inference test data to test the hypothesis
that temporal condition would impact neural engage-
ment during inference.

RESULTS

Behavioral Performance

To test how the temporal proximity of events impacts the
ability to draw inferences about their relationships, we
compared inference performance for each temporal con-
dition. As predicted, inference success was greater and
RTs on correct trials were faster when initial associations
were learned on the same day as compared with the prior
day (inference success: t(28) = 2.25, p = .016; RT for
correct inferences: t(28) = 2.47, p = .010; Figure 1E, F).

However, participants also forgot more prior-day than
same-day initial associations (prior day mean = 0.87,
same day mean = 0.92, t(28) = 4.80, p < .001). To en-
sure that the behavioral benefit for same-day inferences
did not solely result from better memory for same-day
initial pairs, we performed two control analyses. First,
we related the behavioral benefit for same-day inferences
to the forgetting cost for prior-day initial memories
across participants. If the difference in inference in the
two temporal conditions was due to forgetting of prior-
day initial pairs, participants who forgot the most prior-
day initial pairs compared with same-day initial pairs
should also be those that show the greatest difference
in inference performance for those conditions. However,
the relationship between the same-day inference benefit
and the forgetting of prior-day initial memories was not
significant (r = −.132, p = .49). In other words, partici-
pants who showed the greatest behavioral benefit for the
same-day inferences are not necessarily those who re-
member same-day initial pairs better than prior-day pairs.
We also performed a second analysis of the inference
data limited to the trials for which the initial pair was
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remembered. Inference performance was still reliably
greater and RT faster for same-day associations relative to
the prior-day condition (inference success: prior day
mean = 0.60, same day mean = 0.65, t(28) = 2.13, p =
.021; RT for correct inference: prior daymean=2545msec,
same day mean = 2476 msec, t(28) = 1.76, p = .045).

We further examined memory for the overlapping
(BC) events themselves as a function of temporal proxim-
ity to the initial associations. Memory for overlapping
events was not affected by the temporal condition (rec-
ognition: prior day mean = 0.86, same day mean 0.85,
t(28)=0.73,p=.47; RT: prior daymean=1701msec, same
day mean = 1705 msec, t(28) = 0.18, p = .86), indicating
that the differences in inference performance did not
result from differential memory for overlapping events
themselves.

Evidence for Reactivation during Encoding of
Overlapping Events Does Not Differ between
Temporal Conditions

At the neural level, we first tested whether (1) informa-
tion about related A items was reactivated during encod-
ing of overlapping BC events and (2) the degree of
reactivation differed as a function of temporal condition.
We trained an MVPA classifier on independent data from
the same participants to differentiate between neural pat-
terns related to face, house, and object categories. We
then applied the classifier to index reactivation of the re-
lated face or house stimulus from the initial pairs during
encoding of each overlapping object–object pair. Repli-
cating our prior study (Zeithamova, Dominick, et al.,
2012), we found a significant reactivation of initial mem-
ories during encoding of related events (Figure 2A). Con-
trary to our prediction, evidence for reactivation did not
differ for prior-day and same-day memories (t(28) =
−0.87, p = .39; Figure 2B).

To replicate our prior findings, we also tested whether
individual differences in reactivation evidence during en-
coding track individual differences in subsequent infer-
ence success (Zeithamova, Dominick, et al., 2012),
irrespective of condition. We found a significant positive
correlation between reactivation and inference success
(r = .40, p= .017), indicating that participants who show
evidence for reactivation during encoding of overlapping
events are more successful at inference. When we as-
sessed the correlation between reactivation evidence
and inference performance separately for each temporal
condition, the across-participant correlation was numeri-
cally but not significantly greater for same-day than prior-
day conditions (prior day r = .18, same day r = .32).

Same-day Events Are More Likely to Be Integrated
during Encoding

Prior work showed that is possible to decode, from nor-
malized whole-brain activation patterns, whether partici-
pants integrate information across events as they learn
about new experiences that overlap with existing memo-
ries (Richter et al., 2016). Here, we used the classifier
from that prior study, which was trained on an indepen-
dent group of participants, to test our hypothesis that
same-day overlapping events would be more likely inte-
grated with existing memories relative to overlapping
events from the prior-day condition. Consistent with
our prediction, we found greater classifier evidence for
integration during same-day overlapping pairs relative to
the overlapping pairs in the prior-day condition (t(28) =
2.04, p= .026; Figure 2C). Thus, although we found com-
parable evidence for reactivation of related memories
across temporal conditions based on the visual content
classifier, evidence for integration based on the mnemonic
strategy classifier was greater for same-day overlapping
events, mirroring the pattern of behavioral data.

Figure 2. Decoding reactivation and integration during encoding of overlapping events. (A) Evidence for reactivation of faces and houses
during encoding of overlapping object–object pairs derived from a visual content classifier. (f )OO: encoding of two objects related to a face.
(h)OO: encoding of two objects related to a house. (B) Reactivation evidence (normalized difference between house and face output) during
encoding of overlapping pairs from the prior day (blue) and same day (green) conditions. (C) Evidence for use of an integration strategy
during encoding of overlapping events for the prior-day (blue) and same-day (green) conditions derived from a mnemonic strategy classifier.
Error bars on all panels denote across-participant SEM. Asterisk (*) denoted a significant difference between conditions (paired t-test p < 0.05).
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We did not have specific a priori predictions about the
other mnemonic strategies indexed by the classifier (re-
trieve old, encode new) for the two temporal conditions.
However, because we observed differences in evidence
for integration and because the relative evidence is
coupled across the three strategies, we tested whether
the two strategies showed corresponding differences
across temporal conditions. We found no differences in
evidence for the retrieve strategy (mean evidence for
prior day = 0.327, SE = 0.006; same day mean =
0.330, SE = 0.006; t(28) < 1), but we did observe signif-
icantly greater evidence for encoding of new associations
for prior-day condition (mean = 0.346, SE = 0.009) than
same-day condition (mean = 0.315, SE = 0.006; t(28) =
2.24, p = .017).

Temporal Condition Decoding during Inference

Inference across events may rely on retrieval of integrat-
ed memory representations or retrieval and recombina-
tion of separate memory representations (Schlichting &
Preston, 2015; Schlichting et al., 2014; Zeithamova,
Schlichting, & Preston, 2012). These two inference strat-
egies are postulated to recruit different neural mecha-
nisms (Preston & Eichenbaum, 2013). Because behavioral
and neural evidence suggested greater probability of inte-
gration for same-day events, we hypothesized that neural

processes brought to bear to inference would differ for
the two temporal conditions. Consistent with this pre-
diction, we found that a whole-brain classifier could dis-
tinguish inference trials from the same-day and prior-day
conditions (mean = 0.534, t(28) = 3.59, p < .001;
Figure 3A), although nothing on the screen indicated the
temporal condition of inference trials. This decoding anal-
ysis suggests that inferences involving prior-day memories
engage different processes than inferences across same-
day events. We further hypothesized that the ability to
make successful inferences across events would be influ-
enced by the ability to engage the process best suited to a
given temporal condition. To test this hypothesis, we com-
puted the correlation between day classification accuracy
and inference accuracy across participant. However,
we did not find evidence for such a relationship (r =
.10, p > .5).

Because same-day inferences were overall more suc-
cessful and faster than prior-day inferences, we per-
formed two control analyses to determine if the temporal
condition decoding was driven by differences in difficulty
across condition. First, we correlated the behavioral in-
ference benefit for same-day events (both for accuracy
and RT) with temporal condition decoding accuracy. If
temporal condition decoding is driven by differences in
difficulty across conditions, it should be easier to decode
temporal condition in those participants who show the

Figure 3. Temporal condition effects during inference. (A, B) Temporal condition decoding during inference. (A) Cross-validated temporal condition
classification accuracy in the whole brain (white bar) and each ROI (gray bars). Dashed line represents chance. Error bars denote across-participant
SEM. (B) Correlation between IFG pars opercularis day classification and inference performance across participants. (C) Univariate temporal
condition and success effects. Mean activation during inference split by temporal condition and inference success. Star (*) next to the region’s
name denotes significant main effect of Success (corrected for multiple comparisons). No region showed main effect of temporal condition or
Temporal condition × Success interaction. Error bars denote across-participant standard error. Asterisk (*) above individual bars denotes
above-chance classification within a given region (one-sample t-test p < 0.05, corrected).
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largest difference in accuracy across conditions. We did
not find a significant relationship between temporal con-
dition decoding and the same-day inference benefit
(accuracy differences: r = .20, p > .3; RT differences: r =
.11, p > .5), suggesting that condition level differences
in difficulty were not driving decoding. Second, we per-
formed decoding analysis limited to correct trials only,
running 100 Monte Carlo simulations that randomly sub-
sampled trials to equate the number of training trials used
for each condition. Cross-validated decoding accuracy
remained above chance (mean = 0.545, t(28) = 3.25,
p = .003).

Prior research suggests that different inference strate-
gies may differentially recruit hippocampus and prefron-
tal regions (Preston & Eichenbaum, 2013). We tested this
hypothesis using the same multivariate approach as we
employed with the whole-brain classifier but testing clas-
sification performance within hippocampus and each
prefrontal ROI separately. Mean day classification ac-
curacy was above chance in VMPFC (t(28) = 2.87, p =
.008) and all IFG subregions (all t > 3.47, p < .002;
Figure 3A). Furthermore, IFG pars opercularis classifica-
tion accuracy positively tracked inference success across
participants (r = .49, p = .006; Figure 3B), a pattern not
present in other regions (all r < 0).

Because same-day inferences were overall more suc-
cessful and faster than prior-day inferences, we per-
formed the same two control analyses as we did with a
whole-brain classifier to determine if the temporal condi-
tion decoding was driven by differences in difficulty
across condition. First, we found no correlation between
decoding accuracy and behavioral benefit (in accuracy or
RT) for same-day events (accuracy differences: max r =
.07, p > .7; RT differences: max r = .18, p > .3), suggest-
ing that condition level differences in difficulty were not
driving decoding. Second, decoding analysis limited to
correct trials only (averaging 100 simulations with random
subsampling of trials to equate the number of training
patterns across conditions) showed that cross-validated
accuracy in IFG pars opercularis remained above chance
(t(28) = 2.71, p = .01), with a similar pattern in IFG pars
triangularis (t(28) = 2.18, p = .04) that did not reach the
corrected threshold.

Overall Activation and Inference Success Effects in
Hippocampus and IFG Are Equivalent across
Temporal Conditions

To test whether temporal condition decoding in these re-
gions was driven by overall activation differences be-
tween conditions and to test whether they are engaged
during inference in the current task, we performed a uni-
variate analysis with Temporal condition and Inference
success as factors. Consistent with prior reports of hippo-
campal and IFG role in mnemonic inference (Zeithamova
& Preston, 2010), we observed a significant main effect of
Inference success in the hippocampus, IFG pars triangu-

laris, and IFG pars orbitalis (all F(1, 28) > 15.9, p< .001),
with greater activation during correct than incorrect in-
ferences (Figure 3C). Success effects in IFG pars opercu-
laris (F(1, 28) = 2.59, uncorrected p = .12) and VMPFC
(F(1, 28) = 4.05, uncorrected p = .054) did not reach
significance threshold. No main effects of Temporal con-
dition (all F < 1) nor Temporal condition × Success in-
teractions (all F(1, 28) < 1.33, p > .26; Figure 3C) were
found in any region, suggesting that mean activation dif-
ferences were not driving decoding of temporal condi-
tion in these regions.

DISCUSSION

In this study, we tested the hypothesis that temporally
proximal events would be more likely to be integrated,
resulting in enhanced inference for the relationships
among those episodes. Consistent with this prediction,
participants were faster and more accurate when making
novel inferences—our behavioral marker of integration
—that involved events experienced within the same
day relative to those experienced on different days. Using
a mnemonic strategy classifier from an independent
study (Richter et al., 2016), we were also able to quantify
the neural evidence for integration during new encoding.
Similar to the behavioral findings, we found greater evi-
dence for integration when participants encoded events
overlapping with memories acquired on the same day
versus those overlapping with prior-day events. In con-
trast, neural evidence for reactivation during encoding
was equivalent for prior-day and same-day related con-
tent, suggesting that reactivation does not always lead
to integration.
During inference itself, whole-brain activation patterns

distinguished when participants were making decisions
about the relationships among events experienced on
the same day from those about events experienced on
different days. Differentiation of the temporal conditions
during inference was particularly apparent in IFG pars
opercularis, where discrimination accuracy tracked indi-
vidual differences in inference performance. These find-
ings may indicate that different strategies are brought to
bear when inferring relationships among integrated ver-
sus separated memories and that deployment of optimal
inference strategies aids performance. Collectively, these
data indicate that temporal proximity of events promotes
memory integration and modulates neural mechanisms
brought to bear during inference.
The temporal context model (Howard & Kahana,

2002) proposes that events experienced close in time
are linked together via a shared temporal context. Consis-
tent with this notion, recent neuroimaging studies have
shown greater neural overlap when events are experi-
enced in immediate succession (Ezzyat & Davachi,
2014; Hsieh et al., 2014). However, the temporal context
model further predicts that events do not have to imme-
diately follow one another to become linked in memory.
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Events that share overlapping content with prior experi-
ence may serve to reactivate a previous temporal context,
providing a mechanism for integration of even tempo-
rally distant memories (Howard et al., 2009). In this
study, however, we demonstrate that there are boundary
conditions that may limit the ability to bridge memories
across time. We show evidence for reactivation and inte-
gration of events experienced minutes apart within the
same experimental session. In contrast, events experi-
enced on different days were less likely to become inte-
grated despite comparable evidence for reactivation. Our
prior work showed that integration during encoding aids
subsequent inference performance (Schlichting et al.,
2014; Zeithamova, Dominick, et al., 2012). In cases when
integration does not occur, inference can still be per-
formed by retrieving and recombining two individual as-
sociations at test, but at a cost of reduced accuracy and
increased RT (Schlichting et al., 2014, 2015). The current
study demonstrates that integration during encoding is
less likely for temporally distant events. Consequently, in-
ference performance for the prior-day condition is both
slower and less accurate than the same-day condition be-
cause fewer integrated representations are formed for
events experienced across days.
At a cellular level, recent activation of a synapse is

thought to temporarily increase its excitability and tag it
for subsequent long-term potentiation to support mem-
ory formation (Frey & Morris, 1997). This synaptic tag-
ging mechanism has also been proposed to guide
allocation of neurons during new encoding (Silva et al.,
2009). Recently tagged neurons would be more likely
to be recruited during new event encoding, which would
promote memory integration. Such enhanced recruit-
ment of tagged neurons, however, is thought to be tem-
porally limited, occurring only when events are
experienced within minutes or hours of one another.
Two recent rodent studies evince this mechanism show-
ing that overlapping neural populations represent events
experienced on the same day, whereas those experi-
enced on different days are representationally distinct
(Cai et al., 2016; Rashid et al., 2016).
In one of these studies (Rashid et al., 2016), mice were

exposed to two events that were separated by a variable
time interval. Two events separated by up to 6 hr re-
cruited overlapping ensembles of amygdala neurons,
and memories of the two events became integrated, as
evidenced by generalization of fear responses across
events. In contrast, events separated by 18 or 24 hr re-
cruited distinct populations of amygdala neurons and
did not show behavioral evidence of integration. Similar
findings have been observed within the CA1 subfield of
the hippocampus, for which overlapping neural popula-
tions represented two events separated by 5 hr but not
two events separated by 7 days (Cai et al., 2016). These
findings parallel the behavioral and fMRI results observed
in the current study and suggest a potential cellular mech-
anism underlying preferential integration of temporally

proximal events. Our study extends these findings to
demonstrate how different representational schemes for
temporally proximal and distant events impacts individ-
uals’ ability to extract new knowledge and reason about
the relationships among memories.

Although these converging animal (Cai et al., 2016;
Rashid et al., 2016) and human findings demonstrate that
temporal proximity is a critical factor determining the
likelihood of integration, other factors may play an im-
portant role in determining whether memories are inte-
grated or separated. For instance, memory strength may
be another boundary condition of integration, as sug-
gested by two sets of findings (Schlichting et al., 2015;
Tse et al., 2007, 2011). In rodents, new flavor–location as-
sociations are acquired rapidly when experienced within
a well-learned spatial configuration acquired across many
sessions relative to a spatial configuration that was fre-
quently changed (Tse et al., 2007, 2011). Presumably,
such facilitation occurs because well-learned events are
more readily reactivated when learning new content that
overlaps with existing knowledge. In humans, stronger
memories also facilitate integration (Schlichting et al.,
2015). When initial events (AB associations) are repeated
many times before the introduction of an overlapping
event (BC associations), hippocampus and pFC form in-
tegrated representations of the overlapping events. How-
ever, when overlapping events were presented in
alternation, hippocampal and pFC form pattern sepa-
rated memories. In the latter condition, the initial event
is experienced only once before introduction of the
overlapping event; thus, the initial memory is likely
weaker and less likely to be reactivated during the over-
lapping event.

In one aspect, these findings may seem somewhat con-
tradictory to the present data, as they show enhanced in-
tegration for events in which the first experience of the
initial memory was more temporally distant from the first
presentation of the overlapping event. However, tempo-
ral distance between the last presentation of the initial
memory and the first presentation of the overlapping
memory was equated across conditions in both of these
studies. The critical events in the strong and weak condi-
tions were both 2 days apart in the studies by Tse and
colleagues. In Schlichting et al. (2015), the last presenta-
tion of the initial memory and the first presentation of
the overlapping event were a few trials apart in both
strong and weak conditions. Thus, when temporal dis-
tance from the last experience is similar, stronger mem-
ories are preferentially integrated. As time and memory
strength are often intertwined, it is not possible to
completely rule out memory strength differences be-
tween conditions in this study. Nevertheless, our results
do indicate that a benefit for same-day inferences was ob-
served in this study even after forgetting of initial events
was taken into account, both within and across partici-
pants. In light of this finding, the present results suggest
that temporal proximity provides an additional boundary
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condition on integration across events that may not be
explained by strength alone.

Our study further extends prior research on the
boundary conditions of memory integration to show
how temporal proximity impacts processes brought to
bear during inference itself. Specifically, multivariate acti-
vation patterns across the brain and in IFG specifically
discriminated when participants inferred relationships
about events experienced within the same day from in-
ferences about events that occurred on different days.
Furthermore, discrimination accuracy in IFG (pars oper-
cularis) was related to superior inference. One interpre-
tation of these findings is that distinct mechanisms may
support inference when an integrated representation has
been formed during encoding (as was more likely in the
same-day condition) relative to when separate represen-
tations are formed. Integrated representations would
support direct retrieval of the indirect relationship be-
tween items that share a common associate; inference
from separated representations would require successful
retrieval of two memories that would then be jointly con-
sidered to support inference (Zeithamova, Schlichting,
et al., 2012). Prior work has shown that distinct subregions
of IFG and VMPFC support integrated and separated
representations (Schlichting et al., 2015). Here, prefrontal
activation patterns that discriminate between temporal
conditions during inference may reflect retrieval of inte-
grated representations for same-day events and retrieval
and recombination of separate memory traces for events
encoded across days. The relationship between prefrontal
discrimination accuracy and performance further suggests
that the ability to access the appropriate representations
for a given condition may contribute to individual differ-
ences in inference success.

Conclusions

Our findings demonstrate that temporal proximity of
events promotes the formation of integrated memory
representations for overlapping events that facilitate
novel inferences about their relationships. These
data shed light on an important boundary condition—
time—that influences when overlapping events are
represented by integrated or separated neural codes,
thus converging with recent cellular work in animals. Fur-
thermore, our findings indicate that the nature of the
representations formed during encoding influence the
processes brought to bear during inference. More broadly,
these findings contribute to our growing understanding
that temporal structure plays an important role in organiz-
ing memories.
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