
Neurobiology of Learning and Memory 134 (2016) 91–106
Contents lists available at ScienceDirect

Neurobiology of Learning and Memory

journal homepage: www.elsevier .com/ locate/ynlme
Hippocampal–medial prefrontal circuit supports memory updating
during learning and post-encoding rest
http://dx.doi.org/10.1016/j.nlm.2015.11.005
1074-7427/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: Center for Learning and Memory, The University of
Texas at Austin, 1 University Station, C7000, Austin, TX 78712, United States. Fax:
+1 (512) 475 8000.

E-mail address: apreston@utexas.edu (A.R. Preston).
Margaret L. Schlichting a, Alison R. Preston a,b,c,⇑
aCenter for Learning and Memory, The University of Texas at Austin, 1 University Station, C7000, Austin, Texas 78712, USA
bDepartment of Psychology, The University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA
cDepartment of Neuroscience, The University of Texas at Austin, 1 University Station, C0920, Austin, TX 78712, USA

a r t i c l e i n f o
Article history:
Received 27 April 2015
Revised 22 October 2015
Accepted 7 November 2015
Available online 25 November 2015

Keywords:
Hippocampus
Medial prefrontal cortex
Memory integration
Inference
Connectivity
Diffusion-weighted imaging
a b s t r a c t

Learning occurs in the context of existing memories. Encountering new information that relates to prior
knowledge may trigger integration, whereby established memories are updated to incorporate new
content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial
prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human
participants with established memories for a set of initial (AB) associations underwent fMRI scanning
during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC–MPFC
functional coupling during learning was more predictive of trial-by-trial memory for associations related
to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC–MPFC
functional coupling was enhanced following overlapping encoding was related to memory integration
behavior across participants. We observed a dissociation between anterior and posterior MPFC, with
integration signatures during post-encoding rest specifically in the posterior subregion. These results
highlight the persistence of integration signatures into post-encoding periods, indicating continued
processing of interrelatedmemories during rest.We also interrogated the coherence ofwhitematter tracts
to assess the hypothesis that integration behavior would be related to the integrity of the underlying
anatomical pathways. Consistent with our predictions, more coherent HPC–MPFC white matter structure
was associated with better performance across participants. This HPC–MPFC circuit also interacted with
content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge
to enable updating. These results show that the HPC–MPFC circuit supports on- and offline integration of
new content into memory.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Episodic memories do not exist in isolation, but rather influence
one another in important ways (Moscovitch et al., 2005; Nadel,
Hupbach, Gomez, & Newman-Smith, 2012). For example, new
learning events that relate to prior knowledge may trigger
reactivation of the existing memory, which may then be modified
as a function of the current experience (Gershman, Schapiro,
Hupbach, & Norman, 2013; Hupbach, Gomez, Hardt, & Nadel,
2007; Kuhl, Bainbridge, & Chun, 2012; Nader & Einarsson, 2010;
Nader, Schafe, & LeDoux, 2000b; Schlichting & Preston, 2014;
Zeithamova, Dominick, & Preston, 2012). In addition to allowing
for outcomes like memory distortion (Gershman et al., 2013;
Hupbach et al., 2007; Loftus, 2005) and deletion (Nader, Schafe,
& LeDoux, 2000a), such retrieval may also benefit new learning.
By recalling related memories during a new experience, prior
knowledge may serve as a foundation that facilities encoding of
the new content (Bartlett, 1932), thereby allowing memories to
be linked across time. Such integration is thought to underlie the
formation of complex knowledge structures like memory networks
(Eichenbaum, Dudchenko, Wood, Shapiro, & Tanila, 1999) or
schema (Ghosh & Gilboa, 2013; Preston & Eichenbaum, 2013;
van Kesteren, Ruiter, Fernández, & Henson, 2012).

Recent theory has implicated hippocampal (HPC)–medial
prefrontal (MPFC) interactions in this process, with MPFC guiding
HPC encoding and retrieval when new information can be incorpo-
rated into existing knowledge (Preston & Eichenbaum, 2013;
Schlichting & Preston, 2015; van Kesteren et al., 2012). We
hypothesize that this circuit may be similarly engaged during
offline periods to promote integration across episodes (Lewis &
Durrant, 2011), with integrated memories ultimately stored in
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MPFC (Schlichting, Mumford, & Preston, 2015). While empirical
research has broadly demonstrated involvement of HPC and MPFC
in memory integration (Tse et al., 2007, 2011; van Kesteren,
Fernández, Norris, & Hermans, 2010; Zeithamova, Dominick,
et al., 2012), existing reports diverge in their main findings. While
some have shown HPC–MPFC connectivity increases during events
associated with strong prior knowledge (Tse et al., 2011;
Zeithamova, Dominick, et al., 2012), others have observed
decreases (van Kesteren, Fernández, et al., 2010), leaving open
questions as to how these findings may fit together under a single
mechanism. More evidence is needed to inform our understanding
of when and how the HPC–MPFC circuit supports encoding.

Here, we seek to fill this gap in understanding by providing a
controlled test of theories regarding interregional interactions dur-
ing integration (Preston & Eichenbaum, 2013; van Kesteren et al.,
2012), particularly focusing on HPC andMPFC as our a priori regions
of interest. We propose that integration through HPC–MPFC
communication reduces interference among related memories,
facilitating encoding of overlapping experiences. We manipulate
the overlap between prior knowledge and new learning on a
memory-by-memory basis, allowing for the examination of HPC–
MPFC interactions mediating updating of individual events. More-
over, the heterogeneity of MPFC has been underappreciated in prior
research on this topic; differences in structural connectivity across
MPFC (Ongür & Price, 2000) suggest that its posterior aspects might
be particularly important for integration (Nieuwenhuis &
Takashima, 2011; Schlichting et al., 2015). We formally test this
idea by interrogating neural signatures within subregions of MPFC.

Here, we provide a targeted investigation of HPC and MPFC con-
tributions to integration both across and within individuals, com-
paring on- and offline neural engagement during periods
reflecting memory updating versus simple associative encoding.
Behavioral studies in humans have revealed that passive rest fol-
lowing learning promotes memory for individual episodes
(Cowan, 2004; Craig, Dewar, Della Sala, & Wolbers, 2015; Dewar,
Alber, Butler, Cowan, & Della Sala, 2012; Melton, 1970), perhaps
in allowing for the engagement of early consolidation processes
(McClelland, McNaughton, & O’Reilly, 1995). Recent work has
extended these findings to demonstrate sleep- (Coutanche,
Gianessi, Chanales, Willison, & Thompson-Schill, 2013;
Ellenbogen, Hu, Payne, Titone, & Walker, 2007) and rest- (Craig,
Dewar, Harris, & Della Sala, 2015) related increases in performance
on novel judgments spanning multiple experiences, consistent
with the idea that offline processing may also facilitate integration
(Buckner, 2010). Mechanistically, sleep-based memory reactiva-
tion triggered by HPC sharp wave ripples has been hypothesized
to enable connections to be formed among co-activated represen-
tations, promoting integration (Lewis & Durrant, 2011) in function-
ally coupled neocortical regions like MPFC (Wierzynski, Lubenov,
Gu, & Siapas, 2009). Inspired by such theories, we propose that
similar reorganizational processes may occur during awake rest
periods immediately following learning via HPC–MPFC interac-
tions. While sharp wave ripples are known to occur predominantly
during slow-wave sleep (Diekelmann & Born, 2010), empirical
work in rodents and humans suggests that HPC ripples also occur
during awake rest following learning (Axmacher, Elger, & Fell,
2008; Buzsaki, Leung, & Vanderwolf, 1983; Cornwell, Overstreet,
& Grillon, 2014; Ego-Stengel & Wilson, 2010). While the behavioral
significance of such awake-phase events remains unclear (see
however Axmacher et al., 2008), it may be the case that like ripples
events during sleep, rest-phase ripples also trigger reactivation of
prior experience (Foster & Wilson, 2006; Gupta, van der Meer,
Touretzky, & Redish, 2010; Karlsson & Frank, 2009; Schlichting &
Preston, 2014; Staresina, Alink, Kriegeskorte, & Henson, 2013)
and allow for integration across multiple related memories
(Craig, Dewar, Harris, et al., 2015) activated simultaneously in
the brain. We thus predicted that HPC–MPFC interactions would
be enhanced during rest periods following opportunities for
memory updating, with the degree of enhancement predicting
integration-related behaviors. Furthermore, as behaviors tapping
the HPC–MPFC circuit should depend on the integrity of the under-
lying structural connections, we hypothesized that more coherent
white matter tracts connecting these regions would be associated
with superior integration.
2. Materials and methods

Data from some portions of this experiment were described in a
previous report (Schlichting & Preston, 2014) examining how
processes prior to encoding influence new learning. Here, we focus
on how the HPC–MPFC circuit is engaged during and immediately
following new learning experiences.

2.1. Participants

Participants were as reported previously (Schlichting & Preston,
2014). Forty-eight right-handed volunteers (27 females; ages
20–33, mean ± SEM = 24.6 ± 0.5 years) participated in the experi-
ment. Consent was obtained in accordance with an experimental
protocol approved by the Institutional Review Board at the
University of Texas at Austin. Participants received monetary com-
pensation for their involvement in the study. Data from a total of 13
participants were excluded for the following reasons: hardware
malfunction (N = 5), handedness concerns (N = 1), and lowmemory
performance (N = 7). Low memory performance was defined as
either (a) failure to subsequently recall more than 10% of BC and
XY associations studied in the scanner (N = 6) or (b) failure to reach
near-perfect performance on initial AB associations (<80% cued
recall accuracy; N = 1). Data from the remaining 35 participants
were included in all functional analyses (21 females; ages 20–30,
24.1 ± 0.5 years). An additional 10 participants were excluded from
the diffusion tensor imaging (DTI) analysis due to data acquisition
error. Thus, 25 participants were included in the structural
connectivity analysis (15 females; ages 20–30, 24.2 ± 0.7 years).

2.2. Materials

Stimuli for the associative inference task (Fig. 1) (Preston,
Shrager, Dudukovic, & Gabrieli, 2004; Zeithamova & Preston,
2010; Zeithamova, Dominick, et al., 2012) consisted of 60 grayscale
images of famous faces (30 male and 30 female) and 240 grayscale
images of common objects organized into 60 triads (denoted ABC)
and 60 pairs (denoted XY). All images were presented with verbal
labels. ABC triads consisted of one face and two objects and were
presented as overlapping AB and BC pairs, with the B item shared
between pairs. That is, AB pairs always consisted of one famous
face (A) paired with one object (B) (Fig. 1B); the same object (B)
was then paired with a different object (C) to form a BC pair
(Fig. 1C, left). Non-overlapping XY pairs consisted of two objects
(Fig. 1C, right). All items were unique to their triad or pair, such
that a single face or object image was a member of only one ABC
triad or one XY pair. Four randomization groups were created to
control for the organization of images into triads and pairs and
viewing order. Objects were randomly assigned to item type (B,
C, X or Y), which determined both whether it belonged to a triad
or pair and during which phase(s) it served as a recall cue (see
below). An equal number of BC pairs associated with male and
female faces (A) were presented within each of two BC encoding
scans; no other constraints in item assignment or trial order were
imposed. As described below, the order of BC encoding versus XY
encoding was counterbalanced across participants.
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Fig. 1. Experimental design and theoretical predictions. (A) Schematic depiction of
the experiment timeline. The present paper focuses on the BC (orange) and XY
(green) encoding phases and post-encoding rest periods (yellow). See also panel C.
For findings related to the post-AB rest period, see Schlichting and Preston, 2014.
(B) Participants learned a series of AB face–object associations across four
alternating study-test repetitions during the pre-training phase. Memory perfor-
mance was near ceiling by the final test block, demonstrating strong memories for
the AB pairs (see Results, Behavioral performance). (C) Predictions for the present
study. Following the pre-training phase, participants were transferred to the MRI
scanner for study of overlapping BC and non-overlapping XY object–object
associations. BC and XY study blocks were each followed by a rest period (yellow).
The order of BC and XY study was counterbalanced across participants. Left,
overlapping BC associations (orange) included one object (here, HARP) that had
previously been paired with a face during the pre-training phase (panel A, blue and
panel B). Such overlap allows for prior AB memories to be reactivated and updated
with the new BC information. We hypothesize that this process engages a network
comprising hippocampus (HPC, indigo), medial prefrontal cortex (MPFC, teal), and
content-sensitive visual regions (e.g., fusiform face area [FFA], magenta). Right, non-
overlapping XY associations (green) included two new objects that had not been
previously learned during the pre-training phase. Brain schematics represent the
predicted functional connectivity enhancement among HPC, MPFC and FFA for
overlapping BC (thick black lines) relative to XY (thin black lines) study and post-
encoding rest periods. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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2.3. Memory task

An overview of the experimental design is provided in Fig. 1A.
Prior to scanning, participants were trained to near-perfect perfor-
mance on all 60 AB (face–object) pairs (Fig. 1B). The goal of the pre-
training phase was to create established memories for the AB pairs,
such that overlapping BC information could then be encoded in
relation to strong existing memories. The AB pre-training phase
consisted of 4 study-test alternations. During the study phase, par-
ticipants viewed each AB pair once (Fig. 1B, left; 3.5 s stimulus,
0.5 s ITI). A items (faces) were always shown on the right; B items
(objects) were always on the left. Participants were encouraged to
construct a visual or verbal story linking the items to aid memory
but were not required to make any explicit response. Each study
phase in the pre-training portion of the experiment lasted 4 min.

Following each study phase, participants completed a self-
paced cued recall test (Fig. 1B, right). The B item (object) was
presented on the left side of the screen next to an empty box.
Participants were asked to say aloud the name of the face that
was paired with it. After either a verbal response had been
produced or the trial was ‘‘passed,” participants viewed a feedback
display in which the correct image appeared in place of the empty
box. Including the feedback displays, each pair was viewed a total
of 8 times during the pre-training phase.

After completing the initial AB pair pre-training, participants
were transferred to the scanner. At no time were participants made
aware by the experimenter of the relationship between the pre-
training phase and subsequent study and test tasks (Schlichting
& Preston, 2014). Once in the scanner, fMRI data was collected dur-
ing 6 min of passive rest. During this time, a white fixation cross
was displayed on a black screen. Participants were instructed to
think about whatever they liked while remaining awake and alert
with their eyes open.

Following the initial post-AB rest scan, participants were
scanned during encoding of overlapping BC (Fig. 1C, left) and
non-overlapping XY pairs (Fig. 1C, right). Pairs were segregated
by type into separate scans. There were a total of four slow
event-related scans (2 BC scans and 2 XY scans; 3.5 s stimulus,
8.5 s ITI). Participants were encouraged to construct a visual or
verbal story while they encoded the new associations; no explicit
responses were required. Each pair was presented just once,
requiring rapid acquisition of associative information. C and Y
objects were on the left; B and X objects were on the right. BC
study scans always occurred in immediate succession, as did XY
study scans. Encoding order of BC and XY scans was counterbal-
anced across participants. That is, for half of the participants, all
BC pairs (scans 1 and 2) were learned before XY pairs (scans 3
and 4); for the other half, the order was reversed. Each study scan
was 6 min long.

Post-encoding rest scans were acquired immediately following
BC (e.g., after study scan 2) and XY (e.g., after study scan 4) learning
(Fig. 1C, yellow). These scans were identical to the post-AB encod-
ing rest scan described previously. Participants were instructed to
think about whatever they liked during the post-encoding rest
scans. Importantly, though participants were aware of the overlap
between AB and BC associations, they had no reason to believe
they would be tested on AC inference associations (in fact, only
two participants reported anticipating the AC inference test; see
below). Therefore, while explicit rehearsal of the BC or XY pairs
is a possibility during these rest scans, it is unlikely that partici-
pants would intentionally rehearse the prior related AB knowledge.

After the final rest scan, participants completed a cued recall
test on BC and XY pairs (Fig. 1A). This occurred outside of the scan-
ner; no imaging data was collected during the test. C and Y items,
presented on the left, served as probes. BC and XY test trials were
randomly intermixed. Following completion of the BC/XY test,
structure of the inferential (AC) associations was explained to par-
ticipants. That is, participants were told that A and C items both
paired with the same B item were indirectly related. Only two par-
ticipants reported that they anticipated this inference test, even
though all participants became aware of the overlap between the
AB and BC associations during the BC study phase. They then com-
pleted a cued recall test on these surprise inference associations.
The same items (C) served as probes, but this time participants
were asked to name the indirectly related item (A, always a face).
Importantly, BC and XY associations were of the same content
type; they differed only in the degree to which they could be
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incorporated into prior (AB) memories. For this reason, we focus
primarily on the comparison between BC and XY memory as an
index of memory integration; however, we also provide additional
follow-up analyses detailing the relationship between neural
signatures and subsequent AC performance (notably, AC and BC
performance were highly correlated). No feedback was provided
during post-scanning BC/XY or AC inference tests to prevent
additional learning of the direct (BC/XY) associations.

Participants had the opportunity to practice the memory task
before beginning the experiment. The practice included only
non-overlapping face–object associations using different stimuli
from the main experiment.

2.4. Analysis of behavioral data

Cued recall responses were hand scored. Responses were scored
as correct if the participant produced the correct label or, for
famous faces, if they provided a unique and accurate description
of the person (e.g., by naming a film in which the actor was fea-
tured). We used this liberal criterion for recall because we found
that participants would often recall a stimulus in great detail
despite an inability to remember the specific verbal label. This type
of recall performance was true for virtually only the Aface stimuli,
and was particularly common early in the initial AB pair pre-
training. For example, instead of recalling Daniel Radcliffe, the par-
ticipant may state ‘‘the guy who plays Harry Potter.” This criterion
has been employed in prior studies using a similar stimulus set and
paradigm (Kuhl, Rissman, Chun, & Wagner, 2011). A proportion
correct was calculated for each participant, pair type (for AB, BC,
XY and AC) and repetition (for AB only).

As reported previously (Schlichting & Preston, 2014), perfor-
mance on BC pairs and AC inferences was highly correlated, both
across participants (r33 = 0.98) and on a triad-by-triad basis within
participant. AB performance also predicted both memory for the
overlapping BC information and AC inference performance. For
additional behavioral analyses, see Schlichting and Preston (2014).

2.5. Visual localizer task

After the memory task, participants completed a blocked design
functional localizer during fMRI scanning to obtain neural patterns
associated with viewing different types of visual stimuli.
Participants viewed blocks of faces, objects, and scrambled objects
while performing a 1-back task. For each image, they pressed one
of two buttons on a keypad to indicate whether the picture was
new or a repeat of the immediately preceding picture. Responses
were collected solely to ensure attention to the task and were
not considered as part of the analysis. The images used in the local-
izer task were different from those used in the memory task. There
were four blocks of each stimulus type per run, plus additional
interleaved blocks of passive fixation. Blocks were 18 s long, yield-
ing a total run length of 5 min. Three localizer scans were collected.

Participants had the opportunity to practice the visual localizer
task before beginning the experiment. The practice contained one
abbreviated block of each of the three stimulus types. Practice
stimuli comprised images different from those used in the scanned
task.

2.6. MR data acquisition

Imaging data were acquired on a 3.0T GE Signa MRI system (GE
Medical Systems). All functional data were collected in 33, 3-mm
thick oblique axial slices using an EPI sequence (TR = 2000 ms,
TE = 30.5 ms, flip angle = 73; 64 � 64 matrix, 3.75 � 3.75 mm
in-plane resolution, bottom-up interleaved acquisition, 0.6 mm
gap). T2-weighted structural images were acquired in the same
prescription as the functional images for the memory (TR = 3200 ms,
TE = 68 ms, 512 � 512 matrix, 0.46 � 0.46 mm in-plane resolution)
and visual localizer (TR = 3200 ms, TE = 68 ms, 256 � 256 matrix,
0.94 � 0.94 mm in-plane resolution) tasks. Diffusion-weighted data
were acquired to characterize white matter structure
(TR = 12,000 ms, TE = 87.1 ms, 25 diffusion directions, maximum
b-value = 1000, 128 � 128 matrix, 0.94 � 0.94 in-plane resolution,
41 straight axial slices, 3-mm thickness, no gap). A T1-weighted
3D SPGR structural volume (256 � 256 � 172 matrix, 1 � 1 �
1.3 mm voxels) was also collected to facilitate image coregistration
and for automated parcellation using Freesurfer (http://surfer.nmr.
mgh.harvard.edu/) (Desikan et al., 2006).

2.7. fMRI data preprocessing

Functional data were preprocessed using FSL version 5.0.2
(FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl). The first
4 volumes of all functional scans were discarded to allow for T1
stabilization. Motion correction was performed within each func-
tional scan using MCFLIRT by aligning all images in the run to
the middle volume in the timeseries. Coregistration of functional
data across runs was performed by calculating and applying the
affine transformation from each run to a reference run using FLIRT,
part of FSL. The 3D SPGR structural volume was registered to the
functional reference run using the EPI registration utility (part of
FLIRT) and then resampled to functional space. Brain extraction
was performed on all structural and functional images using BET.

2.8. Regions of interest

2.8.1. Anatomical region of interest definition
The HPC was delineated by hand on the 1 mm MNI template

brain and reverse-normalized to each individual’s functional space
using Advanced Normalization Tools (ANTS) (Avants et al., 2011).
Specifically, a non-linear transformation was calculated from the
MNI template brain to each participant’s 3D SPGR volume. This
warp was then concatenated with the SPGR to functional space
transformation calculated using FLIRT. After applying the transfor-
mation using ANTS, the anatomical HPC ROI was aligned to each
participant’s functional data.

MPFC ROIs were generated for each participant using output
from Freesurfer (Desikan et al., 2006) run on each individual’s SPGR.
Because previous studies on similar topics (Kumaran, Summerfield,
Hassabis, & Maguire, 2009; Sweegers, Takashima, Fernández, &
Talamini, 2013; van Kesteren, Rijpkema, Ruiter, & Fernandez,
2010; van Kesteren, Rijpkema, Ruiter, Morris, & Fernández, 2014)
have identified a range of activation foci throughout themedial sur-
face of PFC, we combined medial orbitofrontal and rostroanterior
cingulate to create an MPFC ROI for each participant. ROIs were
then aligned to each individual’s functional data using transforma-
tions applied in FLIRT, as described above.

2.8.2. Functional region of interest definition
Functional data from the localizer task were used to define face-

sensitive voxels within the fusiform gyrus (i.e., fusiform face area,
FFA). Analysis of fMRI data from the localizer task was carried out
using FEAT (fMRI Expert Analysis Tool) version 6.00, part of FSL.
The following pre-statistics processing was applied: grand-mean
intensity normalization of the entire 4D dataset by a single multi-
plicative factor; high-pass temporal filtering (Gaussian-weighted
least-squares straight line fitting, with sigma = 64 s); and spatial
smoothing (5 mm FWHM). FILM prewhitening was used. Stimulus
presentation blocks were modeled as events of 18 s duration, with
one regressor for each stimulus type (face, object, scrambled
object, passive fixation). Temporal derivates were included. Stimu-
lus regressors were convolved with the canonical (double-gamma)
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HRF. Motion parameters calculated during the motion correction
step and their temporal derivatives were added as additional con-
found regressors. Two measures of framewise data quality were
also calculated to identify volumes that may be adversely impacted
by motion artifacts: framewise displacement (FD) and DVARS
(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). FD measures
the overall change in head position from one time point to the
next, and is calculated by summing the absolute values of the
derivatives of the six motion parameters calculated during the
realignment step. DVARS measures the overall change in image
intensity from one time point to the next. This index is calculated
as the root mean square of the derivatives of the timecourses
across all voxels in the brain. Both FD and DVARS were added to
the model as regressors of no interest (Schonberg et al., 2014).
Additional regressors were created for each time point in which
motion exceeded a threshold of both 0.5 mm for FD and 0.5%
change in BOLD signal for DVARS (plus one time point before and
two time points after) (Power et al., 2012). Temporal filtering
was then applied to the model.

After modeling functional data within each run, the resulting
statistical images were combined across localizer runs for each
participant using fixed effects. As data were already coregistered
across runs, no additional registration or spatial normalization
was necessary. Face-selective regions were defined for each partic-
ipant as those voxels responding more to faces than objects and
scrambled objects. The procedure for FFA definition was as follows:
we created 14 mm spheres centered at each participant’s peak
voxel (i.e., the maximum z-statistic from the face > objects
+ scrambled objects contrast image) located within the posterior
half of their Freesurfer-defined fusiform gyrus. This sphere was
then masked with fusiform gyrus to restrict FFA to gray matter
voxels. This method was used to ensure FFAs of approximately
the same size across participants. This procedure was carried out
separately for the left and right hemispheres; lateralized ROIs were
then summed to create a bilateral FFA (ROI size range: 205–336
functional voxels, mean ± SEM = 288.7 ± 5.7 voxels). As ROI defini-
tion took place in the native functional space of each participant,
no realignment or resampling was necessary.

2.9. Univariate analysis

Analysis of fMRI data from the memory task was carried out
using FEAT (fMRI Expert Analysis Tool) version 6.00, part of FSL.
Grand-mean intensity normalization, high-pass temporal, filtering,
spatial smoothing, and pre-whitening were carried out as
described above.

We interrogated the relationship between encoding activation
and subsequent memory using a general linear model (GLM). The
GLM was designed to isolate effects specific to the encoding of
new associations that overlapped with prior knowledge. Accord-
ingly, encoding trials were sorted based on both subsequent mem-
ory and prior knowledge condition to create four conditions: BC
encoding trials that were later correct, BC encoding trials that were
later incorrect, XY encoding trials that were later correct, and XY
encoding trials that were later incorrect. Contrasts of interest were
(1) BC correct > XY correct and (2) BC correct � BC incorrect > XY
correct � XY incorrect (i.e., the subsequent recall � prior knowl-
edge interaction).

Stimulus presentations were modeled as events with 3.5 s dura-
tions, with one regressor for each condition of interest. The model
was convolved with the canonical (double-gamma) HRF. Temporal
derivatives were included. Motion parameters calculated during
the motion correction step and their temporal derivatives were
added as additional regressors of no interest. As described above,
FD, DVARS, and individual regressors for time points exceeding
FD and DVARS thresholds were added to the models to additionally
account for motion effects (Power et al., 2012; Schonberg et al.,
2014). Temporal filtering was applied to the model.

After modeling functional data within each run, the resulting
statistics images were warped to the MNI template brain resam-
pled to functional resolution (3.75 � 3.75 � 3.6 mm) using ANTS
(Avants et al., 2011). The warped images were combined across
encoding runs for each participant using fixed effects, and then
across the group using mixed effects. For both contrasts of interest,
correction for multiple comparisons was carried out at both the
whole-brain level and using small volume correction within our
a priori HPC and MPFC ROIs. Correction for multiple comparisons
at the whole-brain level was carried out on group-level voxel-
wise statistical images according to cluster-based Gaussian ran-
dom field theory (Worsley et al., 2002), with a cluster-forming
threshold of z > 2.3 and a whole-brain corrected cluster
significance level of p < 0.05. We also interrogated activation
within a priori HPC and MPFC ROIs for integration-specific effects
using small volume correction implemented in 3dClustSim, part
of AFNI (Cox, 1996). Group statistics images were first masked with
each ROI. We then applied a primary voxelwise threshold of
p < 0.05 to the masked images to identify those voxels within our
ROIs surpassing this initial p-value threshold. We then corrected
for multiple comparisons within the ROIs by determining the
cluster extent corresponding to a cluster-corrected threshold of
p < 0.05 using Monte Carlo simulations. Cluster sizes that occurred
with a probability of less than 0.05 across 2000 simulations were
considered statistically significant (13 and 19 voxels at functional
resolution for HPC and MPFC, respectively).
2.10. Task-based functional connectivity

Functional connectivity during task was examined using a
psychological-physiological interactions (PPI; Friston et al., 1997;
O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012)
approach carried out in FEAT version 6.00. Grand-mean intensity
normalization, high-pass temporal, filtering, spatial smoothing,
and pre-whitening were carried out as described previously.

The PPI analyses were performed to isolate regions whose func-
tional connectivity with HPC and MPFC respectively were signifi-
cantly modulated by the interaction of subsequent recall by prior
knowledge condition. Encoding trials were sorted according to
subsequent memory, and a correct � incorrect regressor was con-
structed for each run. Notably, because BC and XY encoding trials
occurred in different scans, this regressor represented the cor-
rect � incorrect difference for either BC or XY study trials, depend-
ing on the run. This served as the psychological regressor. The first
eigenvariate of the filtered timeseries (derived from the univariate
analyses described above) was extracted from each individual’s
anatomically defined HPC and MPFC and functionally defined FFA
ROIs and entered as the physiological regressors for the three PPI
analyses. The PPI regressor served as the regressor of interest and
was generated as the interaction between the psychological and
physiological regressors. An additional task regressor was added
to account for variance associated with both correct and incorrect
trials.

For all three PPI models, stimulus presentations were modeled
as events with 3.5 s durations. Task-related regressors and their
temporal derivatives were convolved with the canonical (double-
gamma) HRF and filtered. Physiological and PPI regressors were
not convolved with the HRF or filtered, as these regressors were
derived from neural signal that had previously undergone tempo-
ral filtering. Motion parameters calculated during the motion
correction step and their temporal derivatives were added as
additional regressors of no interest. As described above, FD, DVARS,
and individual regressors for time points exceeding FD and DVARS
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thresholds were added to the models to additionally account for
motion effects (Power et al., 2012; Schonberg et al., 2014).

After modeling functional data within each run, the statistics
images associated with the PPI regressor were warped to the
MNI template brain resampled to functional resolution using ANTS
(Avants et al., 2011). The warped PPI images were contrasted for BC
and XY study runs for each participant using fixed effects, yielding
a subsequent recall � prior knowledge interaction contrast (i.e., BC
correct � BC incorrect > XY correct � XY incorrect). These statistics
images were then combined across the group using mixed effects.
Correction for multiple comparisons was performed within a priori
HPC and MPFC ROIs using small volume correction implemented in
3dClustSim as described above.

As our anatomical MPFC ROI spans a large and likely function-
ally diverse region (Ongür & Price, 2000; Price & Drevets, 2009;
Roy, Shohamy, & Wager, 2012), we also performed the PPI analysis
described above using the MPFC clusters defined in the univariate
interaction contrast (depicted in Fig. 2B) as the seed. This analysis
was otherwise identical to above.

2.11. Rest-phase functional connectivity

Functional connectivity during rest was interrogated using a
voxelwise regression approach with anatomically defined HPC
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Fig. 2. Activation during overlapping encoding predicts memory updating. Maps include
correction within a priori HPC and MPFC ROIs (orange). (A) Main effect of prior knowledg
comparisons across the whole brain. Clusters in both HPC (left) and MPFC (right) sh
(subsequently correct trials only). Clusters are significant after small volume correction w
1 mm MNI template for visualization. (B) Interaction of subsequent recall and prior kno
brain level. Regions in HPC (left) and MPFC (right) showed a significantly greater subseq
after small volume correction within HPC and MPFC, respectively. Coordinates are in mm
to color in this figure legend, the reader is referred to the web version of this article.)
and MPFC and functionally defined FFA as seed regions. This anal-
ysis approach is similar to that we have employed previously
(Schlichting & Preston, 2014). We interrogated neural activation
for clusters of voxels (1) that showed enhanced rest-phase connec-
tivity following overlapping (post-BC) relative to non-overlapping
(post-XY) encoding conditions and (2) for which the degree of
enhancement was related to subsequent performance. Impor-
tantly, we would expect the post-XY rest period to reflect neural
signatures related to simple associative encoding (i.e., of
object–object pairs), Thus, using this period as a baseline provides
a stringent control for isolating those processes related to memory
integration above and beyond those engaged during learning more
generally.

We first regressed out potential sources of noise from the rest-
ing state data. Specifically, we extracted the first eigenvariate of
the signal across the duration of the each rest scan in anatomically
defined white matter and lateral ventricle ROIs. The signal from
these two ROIs and their temporal derivatives were used to con-
struct a GLM along with: motion parameters, FD, DVARS, and their
temporal derivatives; and timepoints with excessive motion (as
described above). Rest data were high-pass filtered with a cutoff
of 0.009 Hz (Fox et al., 2005; Tambini, Ketz, & Davachi, 2010) and
regressed on these noise sources. The resulting residual timeseries
data for each participant were spatially smoothed (5 mm FWHM).
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clusters significant at the whole-brain level (green) as well as those that survived
e. Regions in parietal cortex and posterior cingulate survived correction for multiple
owed significantly greater activation during encoding of BC relative to XY pairs
ithin HPC and MPFC, respectively. For all figures, activations were resampled to the
wledge. Clusters in left fusiform and bilateral insula were significant at the whole
uent recall effect for BC relative to XY pairs during encoding. Clusters are significant
. See also Fig. S1 for individual participant data. (For interpretation of the references
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As motion-related nuisance signals had already been removed,
each model included only the seed ROI timeseries and its temporal
derivative. The resulting parameter estimate image for each
participant reflected the degree to which activation in each voxel
tracked with activation in the seed ROI across each rest scan. We
then warped these images to the MNI template resampled to
functional dimensions using ANTS (Avants et al., 2011). Images
were contrasted within participant (i.e., each participant’s
post-XY connectivity statistics image was subtracted from
their post-BC connectivity image) and combined them across
participants using a group-level GLM as follows.

We constructed the group-level model with both BC and XY
performance as covariates. To identify those voxels showing
enhanced connectivity with the seed region during post-BC rela-
tive to post-XY encoding (irrespective of memory performance),
we combined the differences images across participants using a
one-sample t-test. We also isolated voxels for which the degree
of connectivity enhancements tracked more with BC than XY per-
formance (i.e., contrast of covariates, BC performance > XY perfor-
mance; see Schlichting & Preston, 2014). Voxelwise statistics were
calculated using permutation tests implemented in Randomise,
part of FSL. Correction for multiple comparisons was then per-
formed within a priori HPC and MPFC ROIs using small volume cor-
rection implemented in 3dClustSim (Cox, 1996) as described
above. We also assessed the relationship between connectivity
and AC inference performance within the performance-related
regions identified above. Contrast values quantifying the degree
of connectivity enhancement with the seed region following over-
lapping BC encoding were extracted and related to AC performance
using partial correlation (controlling for XY performance).

As the above analysis searches for regions demonstrating a
somewhat complex association with behavior (the difference in
post-BC and post-XY connectivity measures relating more to BC
than XY performance), it is difficult to know the precise underlying
pattern that gives rise to this result. To further describe the results
of the above analysis, we extracted post-BC and post-XY connectiv-
ity measures separately from significant regions identified above
(i.e., showing either an overall connectivity enhancement or an
enhancement–performance relationship). These measures were
compared across two groups of individuals demonstrating differ-
ent behavioral signatures: those showing behavior consistent with
a facilitative effect of prior knowledge on new learning, and those
evidencing proactive interference. We used memory for the non-
overlapping XY pairs as a baseline, indexing general memory abil-
ity; note that BC and XY pairs are matched in terms of content type
(two objects) and number of learning opportunities (one per pair).
Thus, differences in memory for these two types of associations
must be related to the presence or absence of prior related knowl-
edge. We reasoned that participants who benefitted from prior
knowledge during new encoding—who might learn BC pairs by
integrating them into prior AB knowledge—would show better
memory for the overlapping BC pairs relative to non-overlapping
XY pairs (facilitation group; BC performance > XY performance,
numeric split; N = 15). Other participants, in contrast, might be
hindered by the prior AB knowledge, as it interferes with new BC
encoding. These participants are expected to show poorer memory
for BC relative to XY pairs (interference group; BC perfor-
mance < XY performance, numeric split; N = 16). This analysis
excluded individuals who had numerically identical BC and XY per-
formance (N = 4). Effects were quantified using 2 � 2 mixed ANO-
VAs with rest scan (post-BC or post-XY) as the within-subjects
factor and behavioral signature (facilitation or interference) as
the between subjects factor t-tests. The reader should note that
these regions were identified precisely because they showed a
significant post-BC enhancement or relationship between
enhancement and behavior. Thus, it is not the relationship itself
but the nature of that relationship among individuals showing
these two behavioral signatures that we sought to isolate.

Due to the large and potentially heterogeneous nature of the
anatomical MPFC ROI (Ongür & Price, 2000; Price & Drevets,
2009; Roy et al., 2012), we repeated the main rest-based connec-
tivity analysis described above using the MPFC clusters defined
in the interaction contrast (depicted in Fig. 2B) as seed regions.

Additionally, to alleviate the possibility that rest-phase connec-
tivity might be attributed to lingering effects of the task itself, we
repeated the analysis omitting the first 30 TRs (60 s) of the rest
scan. This analysis lengthened the delay between study and rest
connectivity analyses to roughly 3–4 min (in addition to the
approximate 2–3 min delay between scans for image reconstruc-
tion and communication with the participant).

2.12. Control analyses

As encoding order was counterbalanced across participants, dif-
ferent individuals experienced differences in time (Schlichting &
Preston, 2014) and mnemonic demand between initial AB pair
pre-training and overlapping BC study. While one group encoded
overlapping BC pairs following AB learning, the other encoded
non-overlapping XY pairs in between learning AB and BC. One
might predict that these differences in encoding order may impact
our neural measures of functional activation or interregional con-
nectivity during study and/or post-encoding rest. For instance,
one possibility is that the present findings are driven primarily
by the group that encoded BC before XY, as the degree to which
AB knowledge is brought to bear during BC learning might
decrease as AB experience becomes more remote (i.e., temporal
proximity of the related experiences may influence these neural
mechanisms). Moreover, there may be behavioral differences
across groups. Accordingly, we performed additional control anal-
yses to assess the effects of encoding order on our behavioral and
neural measures of interest.

2.12.1. Effects of encoding order on behavior
It is possible that the order of encoding overlapping BC versus

non-overlapping XY associations might differentially promote
memory, as these two groups of participants experienced differ-
ences in the relative timing of prior (AB) knowledge formation
and related (BC) encoding. We tested whether performance dif-
fered as a function of encoding order using a 2 � 2 mixed ANOVA.
Trial type (BC, XY) was the within-subjects factor and encoding
order was the between-subjects factor, with performance (propor-
tion correct) serving as the dependent measure. This analysis
revealed no significant effect of encoding order (main effect and
interaction; both F < 0.93, both p > 0.344), demonstrating that dif-
ferences in the relative timing had no significant impact on partic-
ipants’ ability to encode the pairs.

2.12.2. Effects of encoding order at task
We interrogated the encoding phase to determine whether the

degree of task-related functional activation or connectivity differed
significantly as a function of encoding order. We first focused on
clusters showing a significant subsequent recall by prior knowl-
edge condition interaction in univariate activation across the
group. We performed a 2 � 2 � 2 mixed ANOVA with subsequent
recall and trial type as within-subjects factors and encoding order
as the between-subjects factor. Univariate activation served as the
dependent measure. We carried out this analysis for all three
regions identified in the main analysis as showing a significant
interaction effect within our a priori regions (two MPFC clusters
and one HPC cluster; see Fig. 2). We corrected for multiple compar-
isons in the three ROIs using Bonferroni correction, which yielded a
critical p-value of 0.017. Encoding order did not significantly affect
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the observed interaction between subsequent recall and prior
knowledge condition in any region (main effects and 3-way inter-
actions; all F1,33 < 2.49, all p > 0.125).

We also determined whether task-phase functional connectiv-
ity assessed using PPI differed significantly across our counterbal-
ancing groups. We performed a 2 � 2 mixed ANOVA with trial type
as the within-subjects factor and encoding order as the between-
subjects factor. We note that subsequently correct versus incorrect
trials were already contrasted within run; thus, the dependent
measures in this analysis reflected the connectivity difference for
subsequently correct relative to incorrect trials, separately for BC
and XY conditions. This analysis was performed for all six regions
identified previously in the main PPI analyses for FFA, HPC, and
MPFC seeds (for a total of four HPC clusters and one MPFC cluster;
see Fig. 3). Bonferroni correction across the five ROIs yielded a crit-
ical p-value of 0.01. We observed no significant effect of encoding
order on connectivity measures in any of these regions (main
effects and interactions; all F1,33 < 3.27, all p > 0.08).
2.12.3. Effects of encoding order at rest
Next, we investigated the relationship between functional

connectivity during rest and encoding order. We first performed
a one-way ANOVA to assess whether the degree of connectivity
enhancement following BC learning differed as a function of encod-
ing order. Neural measures (degree of connectivity enhancement
for post-BC versus post-XY rest) were grouped by encoding order.
There was no significant effect of encoding order on the degree of
connectivity enhancement (F1,33 = 1.39, p = 0.248).

We performed one-way analyses of covariance (ANCOVA) to
determine whether the observed relationships between functional
connectivity during rest and performance were related to encoding
order. The neural measure served as the independent measure;
behavior was the dependent measure. Encoding order was the
grouping variable. This analysis was performed for all seven
regions identified in the main analyses as relating to performance
when FFA, HPC, or MPFC served as the seed region (for a total of
five HPC clusters and two MPFC clusters; see Fig. 4). We corrected
for multiple comparisons in the seven ROIs using Bonferroni cor-
rection, yielding a critical p-value of 0.007. There was no significant
effect of encoding order on the observed relationship between con-
nectivity and BC performance controlling for XY performance at
our corrected threshold for any region (main effects and interac-
tions; all F1,33 < 5.64, all p > 0.024). We note that the one region
in which the interaction effect would be considered significant at
a more lenient statistical threshold (F1,33 = 5.64, p = 0.024) was
the cluster in left anterior HPC when FFA served as the seed.
Interestingly, this interaction was driven by a stronger relationship
between connectivity and performance among participants who
encoded XY before BC. This is the opposite of what would be
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Fig. 3. Functional connectivity during overlapping encoding predicts memory updatin
showed a significantly greater subsequent recall effect for BC relative to XY pairs during e
See Fig. S2 for individual participant data.
predicted by a temporal proximity account, suggesting that our
findings are unlikely to reflect merely lingering effects of AB
encoding.
2.13. Structural connectivity

DTI data analysis was carried out using tools from FDT (FMRIB’s
Diffusion Toolbox; Behrens, Berg, Jbabdi, Rushworth, & Woolrich,
2007) version 3.0 and Tract-Based Spatial Statistics (TBSS; Smith
et al., 2006), both part of FSL. We were interested in characterizing
how white matter structure in pathways connecting HPC and
MPFC related to memory for critical BC associations relative to
control XY associations. We hypothesized that as the HPC–MPFC
circuit supports the updating of existing memories with new
information, greater white matter integrity in these tracts should
relate to superior overlapping BC pair memory, after accounting
for overall differences in memory ability (i.e., performance on
non-overlapping XY pairs).

To test this hypothesis, we first isolated tracts connecting
anatomical HPC and MPFC ROIs as follows. Registration was car-
ried out within FDT using FLIRT and FNIRT for structural and stan-
dard space transformations, respectively. DTI data were first
corrected for eddy currents, and then a diffusion tensor model
was fit at each voxel of the DTI data for each participant. We gen-
erated probability distributions of diffusion parameters at each
voxel in the brain for each participant using Bayesian Estimation
of Diffusion Parameters Obtained using Sampling Techniques
(BEDPOSTX). We then performed tractography between HPC and
MPFC ROIs using PROBTRACKX, which uses the voxelwise proba-
bility distributions to generate a distribution of pathways connect-
ing specified regions. Probabilistic tractography was carried out for
each individual in native DTI space. Each individual’s anatomical
ROIs were registered to their DTI data using FLIRT transformations
computed previously. Tractography was run twice for each partic-
ipant (number of samples = 5000, curvature threshold = 0.2, maxi-
mum number of steps = 2000, step length = 0.5 mm): once from
HPC to MPFC (waypoint or inclusion mask); and once from MPFC
to HPC. In using this approach, we identified tracts that pass
through both ROIs for each individual.

Each individual’s HPC–MPFC and MPFC–HPC connectivity dis-
tribution maps were thresholded to exclude voxels through which
fewer than 5% (250) of all sampled pathways passed. They were
then added together to create a single bidirectional white matter
ROI for each participant. These white matter ROIs were warped
to MNI space using FNIRT transformations computed previously
in FDT. ROIs were summed across participants to create a single,
group ROI in standard space encompassing all tracts connecting
HPC and MPFC. The overlap of white matter ROIs across
participants is depicted in Fig. 6A.
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Fig. 4. Functional connectivity enhancements during post-encoding rest tracked integration performance. (A) Left, cluster in MPFC showing greater connectivity with HPC
following BC than XY encoding. Right, two clusters in MPFC for which the degree of functional connectivity enhancement with HPC during post-BC encoding rest period
tracked more with BC than XY performance across participants. (B) HPC clusters for which enhancement tracked more with BC than XY performance. (C) Functional
connectivity with FFA during post-BC encoding rest period tracked more with BC than XY performance across participants in HPC. For all panels, clusters are significant after
small volume correction within HPC and MPFC. Coordinates are in mm. See also Fig. 5 for effects split by behavioral signature and Fig. S3 for individual participant data.
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Fractional anisotropy (FA) was used as our metric of white mat-
ter integrity within this ROI. FA quantifies the degree to which
water molecules diffuse in a directional (i.e., anisotropic) manner,
and tends to be high when white matter fibers are oriented simi-
larly (i.e., when coherence is high). All subjects’ FA data were
aligned to common space using FNIRT carried out in TBSS. A mean
FA image was then generated and thinned to create a mean FA
skeleton, which represents the centers of all tracts common to
the group. Each subject’s aligned FA data was then skeletonized,
i.e., projected onto this group skeleton. Mean FA values were
extracted from each individual’s skeletonized data across all voxels
within the group white matter ROI. FA was related to BC memory
and AC inference performance across participants controlling for
XY memory using partial correlation (for a similar approach see
Schlichting & Preston, 2014).

To assess the specificity of this relationship to HPC–MPFC
pathways, we also identified a control white matter ROI, the
corticospinal tract, using the Johns Hopkins University (JHU)
white-matter tractography atlas (Hua et al., 2008). FA values were
then derived from the skeletonized FA data and related to perfor-
mance measures using partial correlation as described above.
2.14. Stepwise multiple regression

Stepwise multiple linear regression analyses were performed to
further assess the degree to which rest-phase functional and struc-
tural connectivity measures were independently related to perfor-
mance. Mean FA values extracted from the HPC–MPFC tract of
interest served as the measure of structural connectivity. For func-
tional connectivity, we averaged across the connectivity measures
from all four clusters (two HPC, two MPFC; depicted in Fig. 4A,
right and Fig. 4B) identified as significantly relating to performance
in the rest-phase analyses seeded with HPC or MPFC. Two sets of
stepwise regression models were run: one with BC performance
as the dependent variable, and one with AC performance as the
dependent variable. XY performance, functional connectivity, and
structural connectivity measures for each participant were entered
into the regression stepwise as predictors. Participants were
treated as a random effect.

3. Results

3.1. Behavioral performance

Behavioral performance was as we have published previously
(Schlichting & Preston, 2014). Briefly, as intended, AB pairs were
well learned by the fourth test block (range: 80–100%, mean ±
SEM: 97.3% ± 0.9% correct recall). Importantly, as BC (11.7–86.7%,
41.5% ± 3.3% correct) and XY (10–78.3%, 42.4% ± 3.4% correct) pairs
were matched on all dimensions except prior knowledge, we were
able to directly compare neural engagement and performance in
these two conditions (Fig. 1C). Interestingly, we observed no differ-
ence between BC and XY performance across the group (t34 = 0.40,
p = 0.693); rather, relative performance on these two conditions
was highly variable across individuals (see Schlichting & Preston,
2014 for a more in-depth discussion of the factors modulating
the interfering versus facilitative effects of prior knowledge on
new learning). This variability enabled us to investigate how neural
processes engaged during task and post-encoding rest periods
related to performance for overlapping BC relative to control
non-overlapping XY pairs. We also found that performance on AC
inferences (6.7–83.3%; 41% ± 3.5% correct) paralleled BC memory
(Schlichting & Preston, 2014), suggesting that A items were not
forgotten over the course of the experiment.

3.2. Hippocampus and medial prefrontal cortex are recruited during
encoding of overlapping events

The above framework suggests that HPC and MPFC will be
recruited during learning, specifically during episodes in which
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interference is reduced through memory updating. We predicted
greater activation in these regions during encoding of overlapping
BC relative to non-overlapping XY associations. Importantly, we
focused on only those associations that were subsequently
remembered in both prior knowledge conditions. We searched
for this BC correct > XY correct effect both at the whole brain level
and within HPC and MPFC regions of interest (ROIs). Two clusters
survived correction for multiple comparisons across the whole
brain: one in posterior cingulate (�3.75, �39.75, 21.6; cluster
extent k = 230; all cluster extents reported in functional dimen-
sions, 3.75 � 3.75 � 3.6 mm) and one extending from precuneus
on the medial surface to superior parietal lobule (�7.5, �66,
39.6; k = 608) (Fig. 2A). Small volume correction revealed signifi-
cant clusters in both left HPC (�33.75, �13.4, �21.6; k = 21) and
in MPFC (�3.75, 35.25, �21.6; k = 49) (Fig. 2A).

We next assessed the link between encoding activation and
subsequent behavior. Our key prediction is that HPC–MPFC
engagement and connectivity will be enhanced when new infor-
mation is successfully integrated into memory. Thus, engagement
should be greater for those overlapping BC associations that are
later remembered relative to those that are forgotten. Moreover,
because BC study events provide the unique opportunity for mem-
ory updating via integration, we predicted HPC and MPFC would
show a larger subsequent memory effect for BC than XY associa-
tions (i.e., a significant interaction between prior knowledge condi-
tion and subsequent memory). At the whole brain level, significant
clusters were observed in right (41.25, �2.25, 28.75; k = 74) and
left insula (�37.5, �6, 0; k = 121) as well as left fusiform gyrus
(�15, �81, �10.75; k = 138) (Fig. 2B). We note that due to differ-
ences in the spatial normalization approach used between the cur-
rent study and our previous study (Schlichting & Preston, 2014),
the insula regions were not identified in our prior report of this
contrast. Using small volume correction, we found one additional
significant cluster in right HPC (22.5, �36, 0; k = 16) and two in
MPFC (anterior: �11.25, 50.25, 0; k = 131; posterior: �22.5, 1.5,
�14.4; k = 37) that showed the predicted interaction (Fig. 2B). Con-
trol analyses verified that the observed interaction between subse-
quent recall and prior knowledge condition did not differ by order
of BC versus XY encoding in any region. As our key hypotheses
relate to integration-specific neural processes and behavior, all
subsequent task-based analyses focus on the prior knowledge con-
dition by subsequent memory interaction.

3.3. Hippocampal–medial prefrontal functional coupling during
learning supports memory integration

While the above-described activation results suggest that both
HPC and MPFC are engaged during integration, we were also inter-
ested in assessing whether their degree of functional coupling
would predict subsequent memory for overlapping but not non-
overlapping pairs. To examine how functional coupling during
new encoding related to the presence or absence of existing knowl-
edge, we performed two psychological–physiological interaction
(PPI) analyses with anatomically defined HPC and MPFC, respec-
tively, as seed regions. Using this approach, we were able to test
our hypothesis that HPC–MPFC connectivity would be modulated
on a trial-by-trial basis as a function of subsequent memory and
prior knowledge condition. We predicted greater functional
coupling during BC study trials that were later correct relative to
those that were incorrect. Moreover, as this effect should be
specific to the overlapping study trials, we looked for HPC and
MPFC regions that demonstrated this connectivity difference more
for BC relative to XY trials.

Consistent with our predictions, we found evidence for
recruitment of the HPC–MPFC circuit during successful encoding
of overlapping information. We observed significant activation
within MPFC (0, 24, �21.6; k = 26) when HPC served as the seed
(Fig. 3A); and conversely, two significant clusters in HPC (left:
�30, �32.25, �7.2; k = 36; right: 37.5, �24.75, �7.2; k = 34) when
MPFC was the seed (Fig. 3B). These effects did not differ signifi-
cantly by encoding order. Because our anatomical MPFC ROI
spanned a large region, we also performed this analysis using the
regions identified in the interaction contrast as seeds (i.e., MPFC
clusters in Fig. 2B). This analysis yielded similar results (two HPC
clusters; left: �33.75, �32.25, �7.2; k = 38; right: 33.75, �17.25,
�14.4; k = 43).

3.4. Encoding-phase functional coupling indicates reinstatement of
prior memories in support of updating

A number of existing studies have shown that prior memories
may be reactivated during encoding of overlapping experiences
(Hupbach et al., 2007; Jones, Bukoski, Nadel, & Fellous, 2012;
Kuhl, Shah, DuBrow, & Wagner, 2010; Richter, Chanales, & Kuhl,
2015; Schlichting & Preston, 2014; Zeithamova, Dominick, et al.,
2012). Such reactivation has been linked to better memory for
the reactivated content itself (Kuhl et al., 2010), superior learning
of the overlapping content (Schlichting & Preston, 2014), and an
enhanced ability to make novel judgments that span the two
events (Richter et al., 2015; Zeithamova, Dominick, et al., 2012).
Accordingly, we hypothesized that greater functional coupling of
HPC and MPFC with face-sensitive visual regions should also be
associated with better subsequent memory specifically for the
overlapping associations due to the related A stimuli being faces.

To test this prediction, we performed a PPI analysis with each
individual’s functionally defined bilateral FFA as the seed region.
We found significant clusters in bilateral HPC (left: �37.5, �21,
�14.4; k = 15; right: 33.75, �17.25, �14.4; k = 15; Fig. 3C, left).
There were no significant clusters in MPFC. Results did not differ
significantly by encoding order.

3.5. Degree of rest-phase hippocampal–medial prefrontal connectivity
enhancements predicts memory integration performance

Existing theory suggests that HPC and MPFC interact during
sleep to integrate and generalize across discrete experiences
(Lewis & Durrant, 2011). Extending these ideas to awake rest
periods (Craig, Dewar, Harris, et al., 2015), we hypothesized that
greater HPC–MPFC connectivity following overlapping encoding
would be associated with more memory updating. We interrogated
neural engagement following encoding of the overlapping com-
pared with the non-overlapping associations. We hypothesized
that we would observe (1) integration-related enhancements in
HPC–MPFC connectivity during post-BC encoding rest relative to
post-XY and (2) that the degree of enhancement would relate to
behavioral evidence for memory integration across participants.

Using a regression approach, we first searched for voxels in HPC
or MPFC for which connectivity with the seed region (MPFC or HPC,
respectively)was greater following BC thanXY encoding. Therewere
no significant clusters in HPC when MPFC served as the seed. How-
ever, when seeding with HPC, we observed a significant region of
MPFC that showed the predicted integration-related enhancement
(3.75, 16.5, �10.8; k = 28; Fig. 4A, left), consistent with the notion
that overlapping events trigger a memory updating mechanism.

We also hypothesized that the degree to which participants
showed enhanced connectivity following encoding of overlapping
relative to non-overlapping associations would correlate with their
behavioral evidence for memory integration. That is, if the
observed functional connectivity truly reflects integration-
specific processes, one would expect that these connectivity
enhancements would support performance only for overlapping
content. Thus, we identified MPFC and HPC voxels for which
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Fig. 5. Rest-phase functional connectivity as a function of rest scan and behavioral
signature in clusters demonstrating significant enhancement effects (shown in
Fig. 4). Regions were defined using (A) HPC and (B) MPFC seeds for showing either
enhanced connectivity during the BC relative to XY rest scan across the group (top
chart, cluster depicted in Fig. 4A, left) or a relationship between the degree of
BC > XY enhancement and individual differences in performance (bottom four
charts, clusters depicted in Fig. 4A, right and Fig. 4B). Connectivity values from the
post-BC (orange) and post-XY (green) rest scans were extracted from these clusters
and averaged across participants showing facilitation (left bar pairs) and those
showing interference (right bar pairs). pMPFC, posterior MPFC; aMPFC, anterior
MPFC. Tensor product symbol denotes rest scan by behavioral signature interaction.
Asterisks indicate significant level, ⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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connectivity was more predictive of BC than XY performance. We
found two significant clusters in MPFC (anterior: 3.75, 50.25,
�14.4; k = 34; posterior: �18.75, 5.25, �10.8; k = 19) when HPC
served as the seed (Fig. 4A, right). We also identified two clusters
in HPC (left: �26.25, �28.5, �7.2, k = 31; right: 26.25, �28.5,
�7.2, k = 24) when MPFC served as the seed (Fig. 4B).

We further interrogated the clusters identified as showing the
predicted patterns (BC > XY main effect and relationships to per-
formance, depicted in Fig. 4A and B) to determine how connectivity
during post-BC and post-XY rest scans related to the different
behavioral signatures exhibited across participants. We did this
by dividing our group into individuals showing behavior consistent
with a facilitative versus interfering effect of prior AB knowledge
on BC learning, with XY pairs serving as the baseline. We reasoned
that participants for whom prior knowledge was beneficial to new
learning would show better memory for the overlapping BC
relative to their non-overlapping (baseline) XY pair memory (facil-
itation group; BC performance > XY performance, numeric split).
Conversely, if prior AB knowledge interferes with the learning of
new related information, we would expect to see lower memory
for BC relative to XY pairs (interference group; BC perfor-
mance < XY performance, numeric split).

For the MPFC cluster showing enhanced connectivity with HPC
for BC versus XY rest across the group (Fig. 4A, left), splitting by
behavioral signature revealed that this effect was driven by
enhanced connectivity for BC versus XY among participants demon-
strating behavioral facilitation (Fig. 5A, top). Interrogating clusters
forwhich the degree of connectivity enhancement trackedwith per-
formance across participants, posterior MPFC (Fig. 4A, right)
showed a pattern consistent with memory updating only in the
facilitation group, with greater connectivity in that group after BC
than XY encoding (Fig. 5A, bottom left). Anterior MPFC (Fig. 4A,
right) demonstrated a similar connectivity enhancement following
BC learning for the facilitation group, but showed the opposite pat-
tern for the interference group; that is, greater connectivity follow-
ing XY than BC encoding (Fig. 5A, bottom right). HPC regions
(Fig. 4B) both showed patterns consistent with integration for the
facilitation group (Fig. 5B), albeit weakly in right HPC (Fig. 5B, right).

Control analyses revealed that these effects did not differ
significantly as a function of encoding order. To limit the possible
effects of the immediately preceding study on rest-phase connec-
tivity, we also performed the above analyses excluding the
first minute of the rest scan. This analysis yielded similar results
(HPC seed, main effect MPFC cluster: 7.5, 27.75, �14.4; k = 24;
performance-related MPFC cluster 11.25, 39, �10.8; k = 30; MPFC
seed, performance-related right HPC cluster: 26.25, �32.25, 0;
k = 29), suggesting that these findings are unlikely to be the result
of continuing study-phase engagement.

We also assessed the across-participant relationship between
connectivity enhancements in these regions and AC inference per-
formance. As expected, all regions exhibited significant positive
associations with inference performance (partial correlations con-
trolling for XY performance; all r32 > 0.49, all p < 0.003). Moreover,
seeding with MPFC regions defined from the univariate interaction
contrast instead of the large anatomical MPFC ROI yielded similar
clusters in HPC (left: �15, �39.75, 0; k = 22; right: 33.75, �32.25,
�7.2; k = 20). These results are consistent with the prediction that
enhanced HPC–MPFC functional coupling following overlapping
encoding supports new learning via the integration of that newly
learned content into prior related memories.

3.6. Rest-phase connectivity demonstrates offline processing of related
memories in support of updating

A number of studies in both rodents and humans have provided
evidence that mnemonic content is processed in the brain during
offline periods (e.g., rest and sleep) (Deuker et al., 2013; Jadhav,
Kemere, German, & Frank, 2012; Staresina et al., 2013; Tambini
et al., 2010). For instance, content-specific increases in HPC-
neocortical connectivity have been demonstrated following
associative encoding (Tambini et al., 2010). Such connectivity
enhancements were also related to performance, suggesting that
offline processing strengthens memory for recent experiences.
We reasoned that immediately following overlapping encoding,
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HPC and MPFC might show greater connectivity with neocortical
regions sensitive to the overlapping content (here, Afaces), reflecting
persistence of the memory updating process. That is, although par-
ticipants most recently encoded object–object associations in both
BC and XY study phases, we predicted that enhanced functional
coupling with face-sensitive regions (FFA) during post-BC relative
to post-XY would be associated with superior performance.

Accordingly, we performed a voxelwise regression analysis with
FFA serving as the seed region. We found three significant clusters
within HPC for which the degree of connectivity enhancement dur-
ing the post-BC encoding rest period related more to BC than XY
performance (Fig. 4C): one in right (30, �21, �14.4; k = 55) and
two in left (anterior: �11.25, �9.75, �21.6; k = 14; posterior:
�15, �36, 0; k = 35) HPC. Connectivity within these HPC clusters
was also significantly related to AC inference performance (partial
correlations controlling for XY performance; all r32 > 0.44, all
p < 0.009). There were no significant clusters in MPFC. These find-
ings did not differ by encoding order. Similar results were obtained
after omitting the first minute of the rest scan (right HPC: 18.75,
�24.75, �14.4, k = 70; left HPC: �22.5, �39.75, 3.6, k = 29; MPFC:
3.75, 5.25, �10.8, k = 35).
3.7. White matter integrity predicts performance in tracts connecting
HPC and MPFC

The preceding findings indicate that HPC–MPFC activation and
functional coupling predicts subsequent memory updating, both
during learning on a trial-by-trial basis and during offline periods
across participants. We hypothesized that the structural integrity
of the white matter tracts connecting these regions would also
predict individual differences in the ability to learn overlapping
relative to non-overlapping associations. Here, we define white
matter integrity as fractional anisotropy (FA), a commonly used
measure quantifying the degree to which water molecules diffuse
in a directional manner. High FA suggests high white matter integ-
rity or tract coherence. There was no relationship between FA in
our control (corticospinal) tract and behavior (i.e., partial correla-
tion with BC and AC performance controlling for XY; BC:
r22 = 0.29, p = 0.169; AC: r22 = 0.28, p = 0.178). However, we did
find a positive relationship between FA in tracts connecting HPC
and MPFC (Fig. 6A) and both BC pair memory and AC inference,
after statistically controlling for individual differences in general
memory ability (i.e., partial correlation with BC and AC perfor-
mance controlling for XY; BC: r22 = 0.42, p = 0.039, Fig. 6B; AC:
r22 = 0.45, p = 0.028).
L

z = -14

A

0 1

x =

Fig. 6. HPC–MPFC structural connectivity predicts memory updating across participants.
Tracts were determined for each individual using probabilistic tractography, warped to th
of participants with tracts in each voxel. (B) Mean fractional anisotropy (FA) values were
shows across-participant relationship between FA within HPC–MPFC white matter tra
performance.
3.8. Structural and rest-phase functional HPC–MPFC connectivity
independently explain variance in integration performance

To investigate the degree to which HPC–MPFC structural and
rest-phase functional connectivity measures independently
explained variance in subsequent learning, we next performed
two stepwise multiple linear regression analyses with (1) XY per-
formance and indices of (2) structural and (3) rest-phase functional
connectivity as independent variables; and BC and AC perfor-
mance, respectively, as the dependent variables. For both BC and
AC performance, the prediction models included all three indepen-
dent variables. For BC performance, the full model fit was statisti-
cally significant (F3,21 = 64.379, p < 1 � 10�9), accounting for 88.8%
of the variance in BC performance (adjusted R2) and was superior
to models with just one (adjusted R2 = 0.589) or two (adjusted
R2 = 0.862) predictors. All three independent variables showed a
significant positive relationship to BC performance (XY perfor-
mance: b = 0.92, p < 1 � 10�10; functional connectivity: b = 0.50,
p < 1 � 10�6; structural connectivity: b = 0.17, p = 0.022; all statis-
tics reflect standardized b), demonstrating the unique contribu-
tions of structural and functional HPC–MPFC connectivity to
subsequent learning of related experiences. Similar results were
found in the stepwise regression model predicting AC performance
(full model fit F3,21 = 46.547, p < 1 � 10�8; adjusted R2 = 0.851,
increased from 0.565 and 0.815 with one or two predictors,
respectively; XY performance: b = 0.90, p < 1 � 10�9; functional
connectivity: b = 0.48, p < 1 � 10�4; structural connectivity:
b = 0.20, p = 0.021).
4. Discussion

The present study provides convergent evidence from
functional and structural MRI methodologies that HPC–MPFC
interactions promote integration of new content into existing
knowledge, both at the level of individual memories and across
participants. This work is consistent with the idea that MPFC
resolves competition among memories through integration
(Preston & Eichenbaum, 2013) and promotes generalization across
episodes (Gilboa et al., 2006; Koscik & Tranel, 2012; Schnider,
2003; Warren, Jones, Duff, & Tranel, 2014). We show that recruit-
ment of the HPC–MPFC circuit benefits new learning, providing a
neurobiological account of the age-old observation that knowledge
can promote the formation of new, related memories (Bartlett,
1932). Integration-related signatures were observed in posterior
MPFC, consistent with this region’s proposed role in integrating
B
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across inputs (Nieuwenhuis & Takashima, 2011). Structural mea-
sures also predicted performance, with greater tract coherence
between HPC and MPFC being associated with superior memory
integration. We further extend prior human and animal work by
showing that content-specific cortical modules interacted with this
circuit in service of integration. Specifically, we found that FFA was
functionally connected to HPC when new content related to previ-
ously learned face–object associations. Despite the large individual
differences in behavior in our study, follow-up analyses ensured
that our observed effects were not driven by only a few high-
performing participants (see Figs. S1–S3).

Enhanced HPC–MPFC coupling when new learning related to
prior knowledge was observed not only during intentional study,
but also during post-encoding rest periods. Despite the fact that
immediately preceding experiences consisted of object–object
associations in both cases, functional connectivity and its relation-
ship to memory performance differentiated post-BC from post-XY
encoding rest periods. We found that enhanced HPC functional
coupling with posterior MPFC following overlapping encoding
was associated with behavioral evidence for superior integration.
This work extends theories on the sleep-based mechanisms
thought to support memory reorganization and integration
(Lewis & Durrant, 2011) by providing an empirical test during
awake rest. We also observed enhanced HPC functional coupling
with FFA during this period, suggesting processing of integrated
traces incorporating more remotely encoded but related content
(Aface items). Taken together, these results suggest a behavioral
benefit (Craig, Dewar, Harris, et al., 2015) to offline processing of
integrated memories on subsequent recall of the newly learned
information.

Theories propose that HPC and MPFC form a highly interactive
and dynamic circuit impacting both encoding and retrieval. In par-
ticular, MPFC is thought to form memory models (Schacter et al.,
2012; St. Jacques, Olm, & Schacter, 2013) that bias HPC retrieval
toward task-relevant memories (Kroes & Fernández, 2012;
Preston & Eichenbaum, 2013; van Kesteren et al., 2012). When
new content overlaps with existing knowledge, MPFC memory
models may thus be activated, guiding HPC retrieval of relevant
knowledge. HPC encoding mechanisms would then bind current
experience to the reactivated content to form integrated memory
traces (Preston & Eichenbaum, 2013; Schlichting & Preston,
2015), updating memory models (van Kesteren et al., 2012)
through projections to MPFC.

The present findings build upon these theories to provide an
understanding of the roles played by subregions of HPC
(Giovanello, Schnyer, & Verfaellie, 2009; Poppenk, Evensmoen,
Moscovitch, & Nadel, 2013) and MPFC (Nieuwenhuis &
Takashima, 2011; Ongür & Price, 2000; Roy et al., 2012;
Schlichting et al., 2015) in memory integration. For instance, uni-
variate analyses revealed that activation in posterior HPC predicted
subsequent memory for overlapping associations. As previous
work has implicated posterior HPC in representing specific event
elements (Komorowski, Manns, & Eichenbaum, 2009; Liang,
Wagner, & Preston, 2012; Poppenk et al., 2013; Preston &
Eichenbaum, 2013; Schlichting et al., 2015), one possibility is that
posterior HPC drives retrieval of mnemonic details during new BC
encoding.

Notably, in contrast to the univariate activation observed in
posterior HPC, task-phase connectivity with MPFC was found more
anteriorly. In addition to having direct anatomical projections to
MPFC (Barbas & Blatt, 1995), anterior HPC has been implicated in
forming generalized representations that span events
(Komorowski et al., 2009; Liang et al., 2012; Poppenk et al.,
2013; Preston & Eichenbaum, 2013). Thus, one possible interpreta-
tion of this finding is that detailed memories reactivated by
posterior HPC are communicated to anterior HPC, which in turn
integrates and transfers them to MPFC. This interpretation is con-
sistent with recent fMRI work showing integration of related mem-
ories in anterior HPC and posterior MPFC (see below; Schlichting
et al., 2015), with similar neural representations for indirectly
related A and C items formed in these regions. Offline processing
of integrated traces may occur through coordinated HPC–MPFC
interactions during rest, with reactivation of episodic detail (poste-
rior HPC) and integration across episodes (anterior HPC) occurring
simultaneously following overlapping encoding.

In the present study, we observed effects primarily in posterior
aspects of MPFC (i.e., subgenual MPFC/anterior cingulate cortex
[ACC]) during both encoding and rest. These findings are consistent
with work suggesting that this subregion in particular carries out
the integrative functions of MPFC (Nieuwenhuis & Takashima,
2011; Roy et al., 2012; Schlichting et al., 2015). Subgenual MPFC
exhibits a widespread pattern of anatomical connectivity (Barbas
& Blatt, 1995; Cavada, Compañy, Tejedor, Cruz-Rizzolo, &
Reinoso-Suárez, 2000; Ongür & Price, 2000), allowing it to inte-
grate across limbic inputs during learning. Damage to this region
results in reduced false memory formation (Warren et al., 2014)
and poor schema representation (Ghosh, Moscovitch, Melo
Colella, & Gilboa, 2014), suggesting its involvement in integrating
across sources of information. Engagement of subgenual MPFC also
increases with consolidation (Nieuwenhuis & Takashima, 2011),
perhaps tracking the increasing importance of abstracted neocorti-
cal representations as experiences become more remote. The pre-
sent work extends these ideas to suggest that enhanced
engagement and connectivity of subgenual MPFC with HPC pro-
motes integration of overlapping events into prior memories
(Schlichting et al., 2015). The present results may thus reflect both
learning-phase biasing of HPC retrieval mechanisms toward rele-
vant memories and rest-phase processing of integrated memories.

We also observed performance-related connectivity of anterior
aspects of MPFC (i.e., rostromedial PFC) with HPC during rest.
Interestingly, this region showed a different pattern of connectivity
than did subgenual MPFC. In anterior MPFC, connectivity was
enhanced during post-BC relative to post-XY rest for individuals
who showed superior BC relative to XY learning, while the opposite
pattern was observed for individuals showing better memory for
XY than BC pairs (Fig. 5A, bottom right). One speculative interpre-
tation of this finding is that while subgenual MPFC integrates over-
lapping content, anterior MPFC performs a more general
mnemonic function. Recent work has demonstrated that this
region maintains distinct representations of indirectly related A
and C items (Schlichting et al., 2015), consistent with the notion
that anterior MPFC stores related memories separately. This region
has also been implicated in episodic simulation and future thinking
(Addis, Pan, Vu, Laiser, & Schacter, 2009; Okuda et al., 2003), which
require retrieval and restructuring of episodic details. Thus, one
possibility is that during post-encoding rest, anterior MPFC guides
reinstatement of both overlapping and non-overlapping associa-
tions. Enhanced rest-phase anterior MPFC–HPC connectivity may
therefore be associated with superior memory for the preceding
pairs, regardless of their relationship to prior knowledge.

Alternate accounts of the present findings might suggest that
enhanced HPC connectivity with prefrontal regions during learning
reflects other operations such as inhibition (Aron, Robbins, &
Poldrack, 2014) or retrieval (King, de Chastelaine, Elward, Wang,
& Rugg, 2015; Schedlbauer, Copara, Watrous, & Ekstrom, 2014) of
the related A item (without integration). With regards to an inter-
pretation based on inhibition, it is worth noting that such functions
have typically been ascribed to right lateral PFC; as such, it is
unclear whether MPFC would be expected to perform a similar
operation. Moreover, inhibiting the A item during BC encoding
would predict forgetting of A’s associated with remembered BC
pairs due to weakening of the successfully inhibited AB memories.
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Our behavioral data are not consistent with this interpretation;
rather, BC memory was paralleled by performance on the AC infer-
ence test, which required retrieval of the A items. Thus, our find-
ings suggest that AB pair memories were not weakened by BC
encoding, which conflicts with an inhibition account.

A second possibility is that HPC–MPFC connectivity reflects
retrieval of the A item itself, and not necessarily integration across
AB and BC events. Under this hypothesis, MPFC may bias HPC to
reinstate the prior memory, but the BC memory is formed sepa-
rately. We suggest that while such an interpretation is a plausible
account of our data, it is important to consider several nuances of
how this hypothesis relates to the present analyses. As our task-
phase connectivity results index the interaction between trial type
and subsequent memory, it must be the case that A item retrieval
via HPC–MPFC interactions promotes BC encoding. Conflict
between prior (AB) retrieved memories and current (BC) experi-
ence may be resolved in one of two ways: (1) differentiation, in
which the new BC memory is kept distinct from AB (Hulbert &
Norman, 2014) or (2) integration of the related AB and BC
experiences. We suggest that the particular mechanism reflected
in HPC–MPFC connectivity may differ across individuals and across
subregions, with both mechanisms (Kumaran, 2012; Schlichting &
Preston, 2015; Zeithamova, Schlichting, & Preston, 2012) occurring
simultaneously to support inference (Schlichting et al., 2015). As
described previously, the present data suggest that while anterior
HPC and posterior MPFC may integrate across related memories,
posterior HPC and anterior MPFC keep them separate. Interest-
ingly, these results accord with our prior work showing differences
in integration and separation of overlapping memories across the
anterior–posterior extents of these regions (Schlichting et al.,
2015).

Notably, the present findings contrast with a prior study that
reported decreased functional coupling for participants with
strong prior knowledge (van Kesteren, Fernández, et al., 2010).
We propose that there are at least three factors that might account
for these discrepancies. First, while the present study trained both
initial and overlapping associations within a single day, the previ-
ous study (van Kesteren, Fernández, et al., 2010) imposed a 24-h
delay between initial learning and overlapping encoding. This dif-
ference could have significant implications for memory processes,
given the demonstrated importance of sleep for integrating and
generalizing across experiences (Buckner, 2010; Lewis & Durrant,
2011). Second, the degree of compatibility between existing
knowledge and new experiences—thought to impact integration
demands (van Kesteren et al., 2012)—is difficult to compare across
paradigms. Prior work (van Kesteren, Fernández, et al., 2010) has
theorized that integration demands may be heightened when
encoding in the context of incompatible related memories, while
our paradigm may encourage resolving incompatibilities via inte-
gration precisely when strong prior knowledge exists (Bein,
Reggev, & Maril, 2014; Preston & Eichenbaum, 2013; Zeithamova,
Dominick, et al., 2012). Third, previous work (van Kesteren,
Fernández, et al., 2010) used a large, heterogeneous MPFC ROI to
assess connectivity with HPC, thus making it impossible to deter-
mine which subregion might have driven their results. Here, we
use a voxelwise approach to demonstrate that integration-related
connectivity enhancements were found only in posterior MPFC.

We also interrogated white matter structure to find that frac-
tional anisotropy in HPC–MPFC white matter pathways related to
memory integration behavior. Prior work (Gerraty, Davidow,
Wimmer, Kahn, & Shohamy, 2014) has shown individual differ-
ences in resting-state functional connectivity relating to memory
integration processes that support generalization. In apparent
contrast to the present findings, that study found that intrinsic
(i.e., not task-evoked) HPC–MPFC functional connectivity was
negatively correlated with behavioral evidence for memory
integration (Gerraty et al., 2014). However, HPC and MPFC also
showed opposite connectivity–performance relationships with
the default mode network (DMN), with low HPC-DMN and high
MPFC-DMN connectivity being associated with superior integra-
tion. Thus, it is unclear whether the negative relationship between
intrinsic HPC–MPFC connectivity and behavior implies more or less
reliance on these structures during integration itself. Our results
complement this prior report in suggesting that even stable indi-
vidual differences in structure and function of HPC–MPFC circuitry
relate to complex memory behaviors. Importantly, our results rely
on an unrelated measure of structural connectivity, highlighting
the conceptual convergence across methodologies.

While we focus the present report on our a priori HPC and MPFC
ROIs, it is notable that a number of regions were more engaged
during the encoding of overlapping (BC) relative to non-
overlapping (XY) associations in terms of univariate activation at
our whole-brain corrected threshold (Fig. 2). Note that these
effects are stronger than those in HPC and MPFC, which did not
reach significance at the whole-brain level. One possible reason
why a more lenient small volume corrected threshold was neces-
sary to reveal the involvement of HPC and MPFC is signal loss in
these regions, due to their proximity to air-tissue interfaces. At
the whole brain level, clusters in posterior cingulate and pre-
cuneus/superior parietal showed greater engagement for subse-
quently correct BC versus XY encoding trials, perhaps reflecting
increased demands on top-down attention (Corbetta & Shulman,
2002; Hutchinson et al., 2014) during overlapping encoding. This
could include increased attention to either (a) the BC pair presen-
tation itself, which serves as a retrieval cue for A or (b) the contents
of retrieval (i.e., allocating attention to the internal representation
of A). We also observed activation in left fusiform gyrus and bilat-
eral insula that was more predictive of subsequent memory for BC
than XY associations, consistent with the idea that engaging these
regions during learning promoted memory specifically for the pairs
overlapping with prior AB knowledge. One interpretation of the
fusiform finding is that activation of this region reflects reinstate-
ment of face information during successful encoding of BC pairs
(Schlichting & Preston, 2014), which would be required for suc-
cessful integration. With regards to insula, it is noteworthy that
while cognitive operations like switching and conflict resolution
have most often been associated with anterior insula (Chang,
Yarkoni, Khaw, & Sanfey, 2012; Menon & Uddin, 2010), our clusters
spanned both posterior and anterior regions. While we do not have
a definitive explanation as to why our task would additionally
engage posterior insula, it is noteworthy that this subregion shows
the greatest intrinsic functional coupling with ventral MPFC
(Chang et al., 2012). Thus, one speculative interpretation of this
finding is that engagement of posterior insula reflects its functional
relationship to MPFC, with anterior insula additionally aiding in
integrating across internal (AB) and external (BC) sources of
information (Chang et al., 2012).
5. Conclusions

We demonstrate that fluctuations in HPC–MPFC connectivity
track integration demands on a trial-by-trial basis. Our findings
also provide novel insight into the timecourse of integration, sug-
gesting the importance of post-encoding rest periods for offline
reorganization of overlapping memories. Evidence of rest-phase
integration was specific to posterior MPFC, consistent with the
notion of dissociable mnemonic functions across MFPC. Moreover,
we demonstrate how underlying HPC–MPFC structure relates to
integration ability, providing insight into why some individuals
are better able to integrate knowledge than others.
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