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Learning-related representational changes reveal
dissociable integration and separation signatures in
the hippocampus and prefrontal cortex
Margaret L. Schlichting1,2, Jeanette A. Mumford3 & Alison R. Preston1,2,4

The episodic memory system enables accurate retrieval while maintaining flexibility by

representing both specific episodes and generalizations across events. Although theories

suggest that the hippocampus (HPC) is dedicated to represent specific episodes while the

medial prefrontal cortex (MPFC) generalizes, other accounts posit that HPC can also inte-

grate related memories. Here we use high-resolution functional magnetic resonance imaging

in humans to examine how representations of memory elements change to either differ-

entiate or generalize across related events. We show that while posterior HPC and anterior

MPFC maintain distinct memories for individual events, anterior HPC and posterior MPFC

integrate across memories. Integration is particularly likely for established memories versus

those encoded simultaneously, highlighting the greater impact of prior knowledge on new

encoding. We also show dissociable coding signatures in ventrolateral PFC, a region pre-

viously implicated in interference resolution. These data highlight how memory elements are

represented to simultaneously promote generalization across memories and protect from

interference.
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O
ur memory system faces the challenge of simultaneously
representing both commonalities and idiosyncrasies
across experiences. For instance, in some cases it is

advantageous to generalize across trips to the supermarket, as
when inferring where to find milk in a new store. However, doing
so will not help you remember where you parked your car on
today’s grocery run. Intuitively, it seems that our brains maintain
both separated memories that keep even highly similar events
distinct and integrated memories that combine events. Yet, the
circumstances and brain regions supporting each remain
unknown.

The tension between separation and integration stems from the
conceptualization of the hippocampus (HPC) as a fast-learning
system that rapidly encodes pattern-separated memories. Under
this model, even related events are coded by largely non-
overlapping populations of HPC neurons1–3, a scheme thought to
support detailed retrieval and protect from interference1. The
complementary learning systems (CLS) framework additionally
proposes a slow-learning neocortical system, which integrates
memories over time1–3. The idea that HPC and neocortex store
complementary traces has received empirical support from
studies showing increasing reliance on the neocortex with
consolidation4 as memories become schematized5.

However, HPC also performs pattern completion, which may
lead to integration in some circumstances1,2,6–8. In particular,
when experiences share features, HPC may retrieve the existing,
related memory instead of separately encoding the new event1,6,8.
Pattern completion during new memory formation would result
in overlapping populations of HPC neurons coding related
events1,9, termed integration. Rodent work has demonstrated
the existence of integrated codes, in which shared features act as
linking ‘nodes’10,11. Moreover, related signatures in humans
have been associated with flexible behaviours such as novel
inference12–15.

We taught participants overlapping AB and BC associations,
with the B item shared between pairs. Participants later
completed a surprise inference test, in which they related
indirectly associated A and C items. Of critical interest was
(1) how indirectly related A and C elements are coded in HPC,
(2) how learning conditions may bias the HPC towards
completion or separation, and (3) how HPC coding schemes
under these learning conditions may relate to individual
differences in HPC anatomy. We operationalize separation as
neural representations for A and C becoming more dissimilar
after learning, consistent with differentiation of neuronal codes
for related AB and BC memories16. Integration via nodal coding
is defined as learning-related increases in similarity of A and C
due to their common association with node B.

Notably, both separated and integrated codes may support
inference1,14,17. In the case of separation, memories for individual
events would be retrieved and recombined through logical
reasoning14 or via recurrent connections17. In contrast,
integration would enable the AC inference to be extracted
directly from the integrated trace14,15. We propose that these
coding schemes are not mutually exclusive; rather, separation and
integration may alternately support inference on an event-by-
event basis. Structural features such as HPC volume may
additionally influence the preferred coding strategy.

The present study aims to determine the learning conditions
that bias the memory system towards pattern completion and
integration over separation. One factor that may influence the
neural representations recruited for a given pair of overlapping
events is the status of the initial (AB) memory at the beginning of
new related learning. Existing theories alternately predict that
stronger18 or more recently encoded19,20 AB memories will
promote pattern completion during a new, overlapping event. For

instance, strong AB representations may promote pattern
completion during BC, thereby allowing for the formation of
overlapping traces1 and behavioural flexibility18. Consistent
with this hypothesis, enhanced generalization performance has
been reported for strong memories13,18,21–24. However, strong
memories are not necessary for integration25,26, as related
signatures have been observed after just a single AB
experience12,27. One possible explanation for these findings
stems from temporal context theories19,20, which predict that
encoding overlapping events close in time leads to greater
representational overlap. Mechanistically, this might result from
an enhanced tendency to pattern complete to recent events, a
prediction that also receives support from models of HPC
function1. This framework suggests that having recently encoded
AB associations during BC learning would result in more similar
A and C representations.

Different coding strategies may also be preferred across HPC
subregions. For example, rodent work has shown that while
anterior HPC neurons respond similarly across related episodes,
posterior HPC firing patterns are event-specific28. Moreover, the
ability to retrieve details has been differentially related to HPC
volumes across the long axis, with smaller anterior and larger
posterior regions being associated with superior recollection
across individuals29. These findings and others30 suggest
dissociable functions along the HPC anterior–posterior axis,
with anterior generalizing across events and posterior representing
event details29. Despite the prominence of these theories, there is
little empirical evidence as to how elements of overlapping events
are coded in human HPC. Moreover, as past work on this topic
has focused almost exclusively on HPC coding, it remains
unknown how prefrontal (PFC) regions might represent
overlapping memories. Both medial and lateral PFC have been
implicated in overlapping encoding and successful inference, with
engagement of medial PFC (MPFC) during learning13 and
inferior frontal gyrus (IFG) during inference12 predicting
performance. Accordingly, one theoretical framework22 suggests
that while MPFC generalizes across events as they are experienced,
IFG represents individual episodes for later recombination.

Here we use high-resolution functional magnetic resonance
imaging (hr-fMRI) to investigate representational changes within
HPC and PFC. We predicted that while posterior HPC might
pattern separate indirectly related A and C items, anterior HPC
would integrate. We also hypothesized a dissociation in PFC, with
MPFC showing integration and IFG showing separation.
Consistent with these predictions, we show that while posterior
HPC and anterior MPFC separate related events, anterior HPC
and posterior MPFC tend to integrate. Integration is particularly
likely when related memories are pre-established relative to when
they are learned simultaneously, suggesting that strong
memories—although encoded more remotely—promote pattern
completion during new learning. IFG also exhibits dissociable
coding signatures that are modulated by learning condition. The
present study moves beyond identifying regions activated during
overlapping encoding to show how these regions simultaneously
promote generalization and protect from interference.

Results
Behavioural performance. To assess the effects of learning
experience on neural representations, each participant learned
half of the overlapping pairs in a blocked and half in an inter-
mixed manner (order counterbalanced across participants; Fig. 1a
and Methods). One way in which these conditions differ is how
established or recent the initial memory is on first encountering
the overlapping pair. In the blocked learning condition, all
12 AB pair presentations occurred before any BC presentations.
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This would ensure that initial AB memories were established on
first encountering the overlapping BC information, which might
promote pattern completion to AB and integration. In the
intermixed condition, overlapping pairs were encoded in alter-
nation, such that initial AB memories were more recent (although
weaker) when BC was first learned. As pattern completion also
shows a bias towards recent information1, encoding AB and BC
in close temporal proximity might also result in A–C similarity
increases.

Memory for both directly learned (Fig. 1b) AB (collapsed
across learning condition; range: 83.3–100%; mean±s.e.m.¼
95.8±1.3%; t25¼ 34.52, Po1� 10� 21) and BC (91.7–100%;
97.4±0.8%; t25¼ 61.67, Po1� 10� 28) pairs was above chance,
indicating that participants had sufficient training on the premise
associations. AC inference (Fig. 1b) was also above chance
(58.3–100%; 90.4±2.3%; t25¼ 17.24, Po1� 10� 14). Investigating
performance as a function of learning condition (Fig. 1c), we
observed only a significant main effect of test trial type (F2,50¼ 6.65,
P¼ 0.003), driven by lower AC inference than direct pair (AB and
BC) memory performance. There was no significant main effect of
learning condition (F1,50¼ 0.43, P¼ 0.518) nor a test trial type�
learning condition interaction (F2,50¼ 0.96, P¼ 0.390). Because
there were no behavioural differences across conditions, we note that
any neural differences are unlikely attributable to differences in
performance.

Dissociable coding signatures across the long axis of HPC.
Participants viewed brief presentations of single A, B, and C items
during hr-fMRI scanning both before and after learning of
overlapping AB and BC associations. We then investigated
learning-related changes in the neural representations of
indirectly related A and C items for evidence of separation and
integration using a representational similarity analysis (RSA)31

searchlight constrained to anatomical regions of interest (ROIs).
For all searchlights, we looked for voxels exhibiting one of the
four hypothesized learning-related signatures in A–C RS (Fig. 2):
(1) integration for both learning conditions; (2) separation for
both learning conditions; (3) interaction, with blocked -
integration (in line with the prediction that established AB
memories would promote integration); and (4) interaction, with
intermixed - integration (in line with the prediction that more
recent AB memories would promote integration). All analyses
were limited to those A and C items for which the AC inference
judgment was correct during the test.

Within HPC, we observed a right posterior cluster (Fig. 3a;
cluster centre of gravity in the Montreal Neurological Institute
(MNI) template coordinates (mm): x, y, z¼ 28, � 37, � 1) that
showed a significant main effect of separation, consistent with the
proposed role of HPC in maintaining orthogonalized representa-
tions for overlapping events2. Follow-up analyses (Supplementary
Methods and Supplementary Fig. 1) demonstrated significant
separation (that is, larger decreases in RS for within- than across-
triad) in this cluster for both blocked and intermixed triads when
considered separately (both Po0.005). In contrast, two regions
in anterior HPC (Fig. 3a; left: � 17, � 16, � 21; right: 29, � 11,
� 27) showed significant blocked - integration interactions
(Fig. 2). In the left, this effect was driven by a significant
separation effect for intermixed triads (Po0.0001), while the
integration effect for blocked triads was at the trend level
(P¼ 0.081). Effects of both integration for blocked triads and
separation for intermixed triads were significant in the right HPC
cluster (both Po0.047). There were no significant learning-related
changes in across-triad similarity for blocked or intermixed
conditions in any HPC cluster (Bonferroni-corrected a-threshold
for significance o0.005; all P40.063; Supplementary Methods).

No regions showed a significant main effect of integration or an
intermixed - integration interaction.

Anterior HPC volumes predict the degree of integration. We
next assessed whether the degree of neural evidence for integra-
tion related to HPC structural measures. Prior work has linked
HPC volumes to individual differences in memory perfor-
mance29, yet the mechanism by which this relationship arises
remains unknown. One possibility is that structural differences
might influence the use of one representational scheme over
another, thereby having an impact on behaviour. For instance,
anterior HPC has been hypothesized to use its broad place fields
to form generalized representations that span events and promote
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Figure 1 | Paradigm overview and behavioural results. (a) During the

study phase (middle), participants intentionally encoded pairs of novel

objects. Half of the pairs were presented in a blocked manner (top, pink);

half were intermixed (bottom, teal). Identical stimulus exposure phases

occurred immediately before (left) and after (right) the study task during

hr-fMRI scanning. Pre- and post-study exposure phases were used to obtain

estimates of the neural patterns evoked by specific stimuli learned during

the study phase. Trial timing and order were matched between pre- and

post-study to avoid introducing unequal biases into the neural pattern

estimates from the two phases. (b) After scanning, participants completed

a two-alternative forced choice test for inference (top, tested first) and

directly learned (bottom, tested second) associations. Participants selected

which of the two choice stimuli (bottom of screen) was associated with the

cue stimulus (top of screen). Correct answers are indicated with dashed

circle (not shown to participants). (c) Performance as a function of test trial

type and learning condition. Left bar pair, AC inference performance for

blocked (pink; 33.3–100%, 92.3±3.1%) and intermixed (teal; 50–100%,

88.5±3.0%) triads. Middle bar pair, AB performance (blocked: 83.3–100%,

96.2±1.4%; intermixed: 66.7–100%, 95.5±1.7%). Right bar pair, BC

performance (blocked: 83.3–100%, 96.8±1.3%; intermixed: 83.3–100%,

98.1±1.1%). Bar heights represent group means; error bars denote s.e.m.

N¼ 26 participants.
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behavioural flexibility29,32. This region also shares the strongest
anatomical connections with MPFC33, making it a good
candidate region for explaining variability in the coding
strategies employed across individuals. Thus, we hypothesized
that more neural evidence for integration—particularly in the
blocked learning condition—would relate across participants
to volume of anterior HPC (defined here as HPC head;
Supplementary Methods).

Anterior HPC volumes were positively related to the degree to
which evidence for integration was observed in the blocked
learning condition (r24¼ 0.43, P¼ 0.027; Fig. 3b, left), such that
larger anterior HPC volumes were associated with more evidence
for integration. There was no relationship between anterior HPC
volume and separation in the intermixed condition (r24¼ � 0.03,
P¼ 0.896; Fig. 3b, right). Posterior HPC segments (body and tail;

see Supplementary Methods) did not relate to the degree of
integration in the blocked condition (both |r24|o0.17, both
P40.414) or the degree of separation in the intermixed condition
(both |r24|o0.06, both P40.801). Moreover, when anterior
(head) and posterior (body and tail) HPC volumes were
simultaneously considered as independent variables in a multiple
regression, only anterior HPC volume was a significant predictor
of integration in the blocked condition (b¼ 0.50, P¼ 0.027; for
posterior HPC body and tail volumes, both |b|o0.28, P40.194).
These findings highlight the relatively greater contribution of
anterior HPC in integration. There was no relationship between
volume of any subregion and the degree of separation in the
intermixed condition (all |b|o0.05, all P40.853) using multiple
regression.

Dissociable coding signatures in MPFC and IFG. Within
MPFC, RSA searchlights revealed significant clusters for three
of the four possible effects—main effects of integration, separa-
tion and a blocked - integration interaction, highlighting the
functional hetereogeneity of this region (Fig. 4). A cluster in
anterior MPFC exhibited a main effect of separation (1, 58,
� 20). Follow-up analyses revealed significant separation
effects in this cluster for both blocked and intermixed learning
conditions (both Po0.03). A slightly more posterior cluster
demonstrated a main effect of integration (� 8, 44, � 17), with
significant effects present in both learning conditions (both
Po0.002). In the most posterior aspects of MPFC (that is, sub-
genual MPFC), two clusters demonstrated blocked - integration
interactions with learning condition (3, 15, � 17; � 7, 18, � 24),
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with integration for blocked and separation for intermixed triads.
In both regions, effects of integration and separation were
significant for blocked and intermixed learning conditions,
respectively (Supplementary Methods and Supplementary Fig. 2;
all Po0.033). No regions showed an intermixed - integration
interaction.

The searchlight restricted to IFG revealed clusters showing
main effects of separation and blocked - integration interactions
with learning condition (Fig. 5). Main effects of separation were
observed in an anterior left region (� 47, 29, 6) and a more
posterior right region (50, 6, � 2). Significant separation was
observed in both blocked and intermixed learning conditions for
both regions (all Po0.020). Neighbouring regions in both the left
and right hemispheres showed a significant interaction with
learning condition (left: � 29, 30, � 2, right: 41, 10, 3; in the right
hemisphere, this cluster extended into the insula). In both
clusters, integration effects were significant for blocked and
separation effects significant for intermixed triad types
(Supplementary Methods and Supplementary Fig. 3; all
Po0.039). There were no significant changes in across-triad
similarity for blocked or intermixed conditions in any MPFC
or IFG cluster (Bonferroni-corrected a-threshold for significance
o0.005; all P40.046; Supplementary Methods). No regions
showed a main effect of integration or an intermixed -
integration interaction.

Whole-brain RSA searchlight results. RSA searchlights unrestricted
to any particular region revealed a number of clusters showing
significant effects of integration, separation and both interactions
with learning condition (Supplementary Table 1). Just two regions
showed main effects of integration, both in PFC. In contrast,
numerous regions showed main effects of separation, including
ventral occipitotemporal areas, temporal pole and insula. Still others
showed interactions with learning condition. Regions including the
midbrain, PFC, and higher-order visual regions showed evidence
for integration in the blocked condition and separation for inter-
mixed. In contrast, the precuneus, middle temporal gyrus and
dorsal PFC showed the opposite pattern.

Discussion
The present study combines hr-fMRI with RSA to identify the
circumstances and brain regions that support integration over
separation of related experiences. We show that the brain
simultaneously maintains both integrated and separated repre-
sentations of overlapping events, providing empirical evidence for

the assumptions underlying computational memory theory1–3.
These distinct representational coding schemes are dissociable
across the brain and within subregions of HPC, MPFC, and IFG,
highlighting the functional heterogeneity of these structures.

Specifically, within our a priori defined ROIs, we show that
posterior HPC, bilateral IFG, and anterior MPFC evidence
separation of overlapping events, with indirectly related A and
C items becoming less similar to one another after learning. In
contrast, mid-MPFC demonstrates integration of A and C. In
other regions—anterior HPC, posterior MPFC, and more medial
aspects of bilateral IFG—these representational changes are
modulated by the manner in which the overlapping events occur,
with blocked learning promoting integration. Notably, neither
neural codes nor behaviour were modulated by differences in the
order of blocked versus intermixed learning (Supplementary
Methods). These findings are consistent with computational
frameworks1 that suggest that HPC pattern completion during
new learning will be more likely when initial memories are well
established. We find that temporal proximity (that is, recency) on
its own is not sufficient for integration25. While high levels of
neural similarity have been shown for items experienced adjacent
in time34, our results further demonstrate that such codes do not
require temporal proximity; rather, having more established (that
is, stronger) existing related memories at the time of first
overlapping experience may be an additional factor promoting
neural similarity.

By quantifying representational change at the level of specific
elements34, we provide empirical evidence for a functional
dissociation across the HPC axis. We demonstrate that
posterior HPC separates across both learning conditions, with
elements from overlapping memories being represented as more
distinct than unrelated elements. This result is consistent with the
view that posterior HPC individuates events from other, often
highly similar, memories22,29,35. For instance, recent human
fMRI work36 demonstrated lower RS in posterior HPC between
segments of overlapping sequences, suggesting that this region
disambiguates related events. However, as neural patterns were
measured during sequence viewing and collapsed across items in
that study, how the representations of specific elements within the
sequences changed as a function of experience could not be
determined. The present study builds on this existing literature to
show that indirectly related memory elements are coded as
distinct in HPC. Recent work has shown that such distinct
representations may arise through an active differentiation
process in HPC by which neural overlap among competing
memories is eliminated16,34, particularly when overlapping events
are studied and retrieved in alternation36. A similar mechanism
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may be at play in the present study, perhaps explaining the
tendency for both anterior and posterior HPCs to take on distinct
A–C representations in the intermixed condition.

In contrast to posterior HPC, anterior HPC (particularly
on the right) integrates in the blocked learning condition.
Prior work has suggested that this region forms generalized
representations22,29, processes relational information37–39, and
combines information across episodes40–42, typically on the basis
of greater engagement during tasks that require consideration of
multiple episodes. The present findings extend our current
understanding to demonstrate how anterior HPC contributes—by
adopting similar neural codes for indirectly related elements
of experience. Interestingly, we also demonstrate a positive
relationship between neural evidence for integration in the
blocked condition and anterior HPC volumes, such that
individuals with larger anterior HPC show more integration.
This result may appear to contradict prior work, which has
demonstrated superior memory for individuals with smaller
anterior HPC29,30,43. One possible explanation that might
reconcile these findings is that integration is harmful for
performance as assessed by standard memory tasks. Specifically,
if a memory task requires retrieval of episodic details, it may be
more advantageous to separate rather than integrate, as integrated
representations may code the commonalities across experiences
while losing the specifics. Thus, it is possible that larger anterior
HPC (that is, more integration) would be associated with superior
performance on a task tapping generalization ability, while
smaller anterior HPC would be more beneficial when a pattern
separation scheme—supporting retrieval of specific episodic
details—is required. The positive relationship between anterior
HPC volume and integration may also seem counterintuitive
from a mechanistic perspective, as smaller anterior HPC should
have fewer neurons and thus may result in more overlap among
memory traces. While the present data cannot provide a definitive
reason for the observed association, one speculation is that larger
HPC heads have more anatomical connections with MPFC,
thereby biasing the system to integrate (see below for additional
discussion related to this point). Alternatively, the distribution of
HPC subfields may vary as a function of overall anterior HPC
size, perhaps differentially biasing the overall response towards
pattern completion or separation7,44.

The specificity of the integration signatures to the blocked
learning condition is consistent with schema theory18 and
modelling frameworks1, which suggest that more robust pattern
completion of established memories will promote representational
overlap. Having pre-established AB memories at the time of first
BC encoding increases the likelihood that the overlapping B item
will cue the previous (AB) memory. In contrast, the AB memory
will be weaker during the first presentation of BC in the
intermixed condition, thus biasing the system towards separation.
More broadly, these findings corroborate a host of work,
suggesting that strong initial memories can serve as a
foundation on which new information is encoded21,24,45,46,
further suggesting that such mechanisms might depend
specifically on anterior HPC and its interactions with MPFC.

Our data suggest that, similar to HPC, MPFC exhibits
functional differentiation along its anterior–posterior axis, with
the most anterior aspects showing the separation of overlapping
memories. One possibility is that anterior MPFC performs a more
general mnemonic function, processing individual memories
irrespective of their relationships to one another. In contrast, we
observed evidence for integration in posterior MPFC. This
finding builds on previous studies implicating this region in
generalizing across events47–49; here we show that similar neural
codes emerge in posterior MPFC for relationships that span
experiences. In mid-MPFC, this pattern is true irrespective of

learning condition. In contrast, subgenual MPFC exhibits
integration for blocked but not intermixed learning conditions,
mirroring the results in anterior HPC. While the neural measures
reported here are not based on any measure of functional
connectivity per se, one possible interpretation of this parallel is
that subgenual MPFC and anterior HPC work in concert to form
and store integrated representations. This notion is consistent
with prior theoretical22,47 and empirical research, including work
demonstrating the direct anatomical connections between
subgenual MPFC and anterior HPC33. Collectively, these
findings illuminate the mechanisms by which MPFC
contributes to overlapping encoding and suggest important
functional distinctions within this large region.

In contrast to MPFC, previous research has shown that IFG
engagement during inference—but not during the preceding
learning phase—predicts performance12, consistent with its
proposed role in actively maintaining distinct individual
event memories50,51 that may be recombined to address
novel judgments. Here we identify bilateral IFG regions that
show both separation and a blocked - integration interaction.
In the left hemisphere, these regions are both in mid-IFG,
corresponding approximately to pars triangularis/Brodmann area
(BA) 45. This region has been widely implicated in resolving
competition among similar alternatives and protecting from
interference50,51. Our findings show that this region exhibits
separated representational codes—perfectly suited for
interference resolution. We also show a similar pattern in the
right hemisphere in slightly more posterior regions (posterior-
IFG or pars opercularis/BA 44). Thus, we suggest that both right
and left IFG are involved in active maintenance of separate
representations to resolve interference among related memories.
Although right IFG has most often been implicated in inhibiting
motor responses52, other work has demonstrated that right
posterior-IFG is also sensitive to relational integration and
interference resolution demands53. However, how our observed
separation relates to the more widely demonstrated roles of right
IFG52 remains to be studied. We also show that under some
conditions—in particular, in the context of pre-established AB
memories—IFG may perform integration. These data suggest that
for prefrontal regions, as in HPC, the specifics of the learning
experience can influence neural representation.

At the whole-brain level, a number of regions exhibit each
of the four potential effects (that is, integration, separation,
blocked - integration, and intermixed - integration; Supple-
mentary Table 1), highlighting how complementary neural
representations might be stored in different brain regions to
simultaneously accomplish both specificity and generalizability of
memories. Interestingly, the midbrain shows both pattern
separation across conditions and a blocked - integration
interaction, similar to anterior HPC and posterior MPFC. Prior
research has also implicated the midbrain in encoding over-
lapping associations26, demonstrating greater test-phase
activation in both HPC and midbrain related to superior ability
to generalize across overlapping experiences. Moreover, recent
work suggests that dopaminergic midbrain inputs may modulate
HPC mechanisms26,54 and interactions with PFC55. For instance,
such inputs may mediate the switch between HPC encoding and
retrieval56 by detecting deviations in the environment from
memory-based expectations54. In the present study, midbrain
signatures may similarly reflect a mismatch response regulating
the switch between pattern separation (encoding) and integration
via pattern completion (retrieval).

The widespread separation we demonstrate throughout the
neocortex may appear to contradict the CLS framework, which
proposes integration in neocortical sites. One possibility is that
pattern separation is generally preferred throughout the brain on
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short timescales like that of the present experiment. The
CLS framework suggests that the cortex generalizes slowly
over many (interleaved) experiences2; thus, it may take more
experience with overlapping associations or more time for such
an integration bias to emerge in the cortex, as memories become
strengthened and consolidated. Moreover, it may be the case that
blocked and intermixed training differentially promote
integration on short (in which blocked experience is superior)
and long (in which interleaved experience may be superior2)
timescales.

Recent work has also used an RS approach to investigate
learning-related changes in neural representations following
integration57. In that study, both MPFC and HPC exhibited
integration of related events (animated clips that comprise a
narrative). However, the authors did not demonstrate the
simultaneous separation of overlapping events, which
prominent computational theories1,2 predict are necessary for
the retrieval of episodic details. Moreover, univariate signal in
anterior HPC was modulated by the temporal closeness of
viewing related and unrelated events, which the authors
interpreted as separation of events that were unrelated to the
narrative. These conclusions may seem to contradict those put
forth in the present study about the role of anterior HPC in
memory integration. However, we argue that there are important
differences in the paradigms employed that may explain these
discrepancies and suggest interpretative caution when
considering the prior findings.

First, that study57 did not allow for unbiased comparisons
between clips from the same versus different narratives, as
narrative membership was confounded with temporal proximity
in the design. For this reason, it is impossible to determine
whether the reported effects reflect integration of specific clips
within a narrative or, rather, a common process engaged during
viewing of all clips that were part of any narrative. For instance,
the increased neural similarity for related clips may reflect a
retrieval process—such as recalling verbal labels that describe
the narratives. Such a process would not be engaged during the
unrelated clips, which could instead elicit a novelty response. This
would explain both their anterior HPC univariate findings and
the RS differences for related versus unrelated clips. Second, their
task encouraged an integration strategy, as participants were told
to determine the relationships among clips. This aspect of their
design coupled with a slow trial structure would allow for—or
even encourage—explicit retrieval strategies similar to the one
described above. For these reasons, their results reflect neither
shifts in the neural representations of the items themselves, as we
demonstrate here (see below), nor the representational strategies
intrinsic to HPC and PFC, given the explicit nature of the
integration task.

The present approach allows us to assess the dynamics of
memory separation and integration directly by overcoming the
confounding factors present in this prior study57. First, we
quantify separation and integration as the learning-related
similarity changes for items from the same relative to those
from different triads. This procedure rules out a process account
in our data. Second, fMRI scanning took place while participants
viewed individual items rather than multi-item events36,57,
allowing for estimation of item-specific neural patterns.
Moreover, our paradigm discouraged the use of intentional
strategies. During learning, participants were unaware that they
would later need to link A and C items, thus decreasing the
likelihood that they would intentionally integrate in preparation
for an upcoming test. For this reason, we are able to index the
intrinsic representational codes exploited by different brains to
encode related events. Moreover, as the neural data were acquired
while participants viewed rapid presentations of individual items

and made an orthogonal visual decision, our neural representations
are unlikely to reflect the active retrieval or suppression of
related items.

One possibility is that the changes reported here reflect true
shifts in the neural representations of the items themselves.
However, perhaps equally likely, similarity increases for A and C
item may reflect (automatic) pattern completion during A and C
viewing to a common B representation, whereas similarity
decreases reflect pattern completion to two different B repre-
sentations. That is, for a region demonstrating pattern separation,
viewing A may lead to (automatic) pattern completion of BA

(the representation of B in the context of A), while C pattern
completes to BC. Such a mechanism would reflect truly pattern-
separated event representations that could be individually
retrieved and logically recombined to support AC inference.
Importantly, either possibility would inform the neural codes that
represent related episodes, as pattern completion to a single
B representation could not explain the observed simultaneous
increases and decreases in A–C similarity. Our findings highlight
that, while much of the memory system may pattern separate,
integration across related memories via HPC pattern completion
can also emerge automatically under certain learning conditions.

Here we provide key support for the idea that the same
memory elements may be represented in strikingly different
manners across brain regions. These results provide an empirical
account for the intuitive notion that memory representations do
not come in a single form; rather, a given experience may have
multiple representations58,59, each advantageous in a different
scenario. Moreover, consistent with computational accounts, the
type of learning experience influences item representations. We
demonstrate dissociations across subregions of HPC, MPFC, and
IFG, underscoring the importance of considering the functional
heterogeneity of these regions.

These findings suggest a theoretical framework in which
posterior HPC supports separation of related events in connec-
tion with lateral and rostromedial PFC, while anterior HPC and
subgenual MFPC integrate across experiences, especially when
initial memories are strong. In contrast, experiencing related
events in close temporal proximity may lend itself to a pattern
separation scheme throughout this network, as weaker over-
lapping memories are especially prone to interference. The results
presented here provide a promising avenue for future computa-
tional research, which may incorporate RSA into formal tests of
model frameworks.

Methods
Participants. Thirty right-handed volunteers (15 women; ages 18–27 years;
mean±s.e.m.¼ 21.7±0.5 years) participated in the experiment. This sample size
was chosen on the basis of related work in our laboratory12,13,21,27. Consent was
obtained in accordance with an experimental protocol approved by the
Institutional Review Board at the University of Texas at Austin. Participants
received monetary compensation for their involvement in the study. Data from a
total of four participants were excluded for hardware malfunction (N¼ 1), failure
to complete the experiment due to illness (N¼ 1), instruction error (N¼ 1),
and low memory performance (N¼ 1). Low memory performance was defined
as failure to reach above 80% correct on the directly learned (AB and BC)
associations as assessed during the post-scan memory test. Data from the
remaining 26 participants were included in all analyses (14 women; ages
18–27 years; 21.6±0.5 years).

Materials. Stimuli consisted of 36 multicoloured novel objects (a subset of which
were adapted from a prior study60) created using Blender, an open source three-
dimensional (3D) animation suite (www.blender.org). Novel objects were made to
appear physically feasible but distinct from real-world objects. We chose novel
rather than common objects to avoid stimuli with pre-existing representations.

Memory task. Novel objects were arranged into 12 ABC triads. ABC triads were
presented to participants as overlapping AB and BC pairs, with the B item shared
between pairs (Fig. 1a). That is, AB pairs consisted of two novel objects, A and B;
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the B object was then later paired with a new novel object C to form a BC pair.
Overlapping AB and BC pairs were divided into two learning conditions com-
prising six ABC triads each: blocked and intermixed. In the blocked learning
condition, all AB pair presentations occurred before the presentation of any BC
pairs (Fig. 1a, pink). In the intermixed learning condition, AB and BC pairs were
presented in alternation; that is, for a given ABC triad, the participant first saw AB,
then BC, then AB, then BC and so on (Fig. 1a, teal). For both conditions, triads
were presented in a pseudo-random order, with the constraint that two pairs from
the same triad (multiple presentations of a single AB or BC; or an AB and its
corresponding BC) were not presented in immediate succession. The assignment of
stimuli to conditions and the order of learning conditions (that is, whether blocked
or intermixed learning occurred first) were counterbalanced across participants.

During a study phase (not scanned; Fig. 1a), novel object pairs were presented
on the screen for 3.5 s with an interstimulus interval (ISI) of 0.5 s. Each of the 24
AB and BC pairs was presented 12 times. The left/right position of stimuli on the
screen was randomized across presentations. Participants were asked to try their
best to remember the pairs by creating a visual or verbal story; no overt response
was required. Importantly, participants were not made aware of the overlap
between AB and BC pairs before beginning the experiment; that is, no instructions
were given as to how they should remember the overlapping associations. The
study was broken up into two parts (blocked and intermixed learning) of 9.6 min
each, with the order counterbalanced across participants. Participants were given
the opportunity to take a short break between study portions, if they so wished.

Participants were exposed to single items both immediately before and
following study during fMRI scanning (Fig. 1a). The goal of the pre- and post-
study exposure phases was to assess the effect of experience on the neural
representations of individual A and C items. While prior work has taken a similar
approach to demonstrate similarity increases for items that were directly paired in
a temporal sequence34, here we index changes in similarity for indirectly related
items. During this task, participants viewed novel objects on the screen in isolation
while performing an orthogonal change-detection task. Trials were 4 s in duration.
At the beginning of the trial, a single novel object appeared on screen for 300 ms.
At a random time during this 300-ms interval, the superimposed black fixation
cross turned either blue or green. Participants were instructed to indicate with a
button press whether the cross turned blue or green. Participants had until the end
of the 4-s trial to make their response, but were asked to respond as quickly and
accurately as possible. These responses were collected solely to ensure attention to
the stimuli and were not considered in the analysis.

During each functional run, each of the 36 items was presented in isolation
exactly twice. Items were presented in a random order, with the additional constraint
that any two items from the same triad (for example, A and C from triad 1) were
presented with no fewer than two other items in between them. This was done to
ensure that the parameter estimate for the item of interest was not contaminated
with lingering activation associated with viewing another item in the same triad. All
items were presented once before any item appeared for a second time (that is, both
halves of each run contained exactly one presentation of all 36 items). The 72-item
trials were randomly intermixed with 24 null fixation trials (4 s long), yielding a total
run length of 6.4 min. There were four pre-study exposure scans and four post-study
exposure scans. The ordering of trials and scans was identical between the pre- and
post-study exposure scans to ensure that pre- and post-study activation measures
were not differentially influenced by stimulus presentation order61.

Following scanning, it was explained to participants that A and C items could
be indirectly related through their common association with a single item, B. After
ensuring that participants understood the inference test, a two-alternative forced
choice test over the inference (AC) and directly learned (AB, BC) associations was
administered (Fig. 1b). All AC inferences were tested before AB and BC pairs to
prevent additional learning of the direct associations. Test trials (AC, AB or BC)
from the same triad never occurred in immediate succession; the order of trials was
otherwise random. A test trial consisted of three items presented on the screen: a
cue item at the top and two options on the bottom. For AC and BC test trials, C
items served as cues; B items served as cues for AB test trials. Participants were
instructed to select which of the bottom two items was associated with the top item.
The test was self-paced. Incorrect options (that is, foils) were always familiar items
that were members of another triad in the same learning condition. Proportion
correct was computed both across learning condition and separately for each
learning condition (blocked and intermixed) and test trial (AC, AB and BC) type
and averaged across participants. Differences in performance across conditions
were assessed using a 3� 2 repeated measures analysis of variance with test trial
type (AC, AB and BC) and learning condition (blocked and intermixed) as within-
participant factors.

Before scanning, participants had the opportunity to practice study, test, and
exposure tasks. The practice study and test stimuli were novel objects that were not
included in the main experiment. The practice pairs were not overlapping, so as to
not encourage any strategy in particular before beginning the experiment. The
practice exposure task consisted of a single presentation of each of the 36 items
used in the main experiment. This was performed to minimize stimulus novelty
effects in the scanner.

MR data acquisition. Imaging data were acquired on a 3.0T Siemens Skyra MRI
system. Functional data were collected in 72 oblique axial slices using an echo

planar imaging (EPI) sequence, oriented B20� off the AC–PC axis (repetition time
(TR)¼ 2,000 ms, echo time (TE)¼ 31 ms, flip angle¼ 73; 128� 128� 72 matrix,
1.7 mm isotropic voxels, multiband acceleration factor¼ 3, GRAPPA factor¼ 2).
Two field maps were collected (TR¼ 589 ms, TE¼ 5 ms/7.46 ms, flip angle¼ 5
degrees; matrix size¼ 128� 128� 60; 1.5� 1.5� 2 mm voxels) to allow for cor-
rection of magnetic field distortions. One was collected before the first functional
run (that is, first pre-study exposure) and one before the fifth functional run (that
is, first post-study exposure). Two oblique coronal T2-weighted structural images
in the same prescription were acquired perpendicular to the main axis of the HPC
(TR¼ 13,150 ms, TE¼ 82 ms, 512� 60� 512 matrix, 0.4� 0.4 mm in-plane reso-
lution, 1.5 mm thru-plane resolution, 60 slices, no gap). These images were later co-
registered and averaged to generate a mean coronal image for each participant. A
T2-weighted structural image in the same prescription as the functional images
(that is, coplanar image; TR¼ 15,780 ms, TE¼ 82 ms, 512� 512 matrix,
0.4� 0.4 mm in-plane resolution) and a T1-weighted 3D magnetization-prepared
rapid gradient echo (MPRAGE) volume (256� 256� 192 matrix, 1 mm isotropic
voxels) were also collected to facilitate image co-registration, intracranial volume
estimation using Freesurfer62, and spatial normalization to the MNI template
brain.

fMRI preprocessing. Data were preprocessed and analysed using FSL version 5.0
(FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl) and Advanced
Normalization Tools (ANTS)63. Motion correction was applied to each functional
run using MCFLIRT, part of FSL. All functional runs were then registered to a
single functional reference run (here, the fourth run) by applying affine
transformations calculated in ANTS to each functional time series. Each
participant’s coplanar, MPRAGE, and mean coronal structural images were
registered to their functional data using affine transformations implemented in
ANTS. The coplanar image was registered to the functional reference run following
field map-based unwarping of the functional data (see below). Transformations
were computed for the MPRAGE to the coplanar image and the mean coronal to
the MPRAGE. Appropriate transformations were concatenated and applied such
that all structural images were moved to functional space and resampled to
functional dimensions. For each registration to functional space (coplanar,
MPRAGE, and mean coronal), resampling occurred only once. Non-brain
structures were removed from the coplanar, MPRAGE, and functional images
using BET, part of FSL. Brain extraction for the mean coronal image was
performed using the brain mask from the MPRAGE. With the exception of group-
level statistics, all analyses were carried out in the native functional space of each
participant.

Pre-statistics processing was carried out using FEAT (FMRI Expert Analysis
Tool) Version 6.00, part of FSL. The following processing was applied: field map-
based EPI unwarping using PRELUDEþ FUGUE64; grand-mean intensity
normalization of the entire four-dimensional (4D) data set by a single
multiplicative factor; highpass temporal filtering (Gaussian-weighted least-squares
straight line fitting, with sigma¼ 50 s); and spatial smoothing using a Gaussian
kernel of 4 mm full-width at half-maximum. The first field map was used to
unwarp the pre-study exposure scans; the second field map was used to unwarp the
post-study scans. This was done to provide equally optimal unwarping for both
scanned phases of the experiment, as any movements during the intervening 20-
min study phase may have caused small changes in the magnetic field.

Estimation of item-level neural patterns. Item-level neural patterns were gen-
erated under the assumptions of the general linear model using a modified LS-S
approach65. Parameter estimate images associated with each of the 36 novel objects
were extracted for each run and each participant using custom Python routines.
Item presentations were modelled as 0.3-s events and convolved with the canonical
(double gamma) haemodynamic response function. The two presentations of each
item were modelled as a single regressor. Motion parameters calculated during the
motion correction step and their temporal derivatives were added as additional
confound regressors. Framewise displacement and DVARS, two measures of
framewise data quality, were also added to the model as regressors of no
interest21,66. Additional regressors were created for each time point in which
motion exceeded a threshold of both 0.5 mm for framewise displacement and 0.5%
change in BOLD signal for DVARS (plus one time point before and two time
points after)66. Temporal filtering was applied to the model. This process resulted
in one statistics image for each of 36 items in each of eight runs (for a total of 288
images per participant).

RSA searchlight. Searchlight RSA was carried out using the PyMVPA toolbox67

and custom Python routines. This approach was used to identify voxels showing
one of the four hypothesized learning-related signatures in A-C RS (Fig. 2):
(1) integration for both learning conditions; (2) separation for both learning
conditions; (3) interaction, with blocked - integration (blocked4intermixed�
within4across-triad similarity); and (4) interaction, with intermixed -
integration (intermixed4blocked�within4across-triad similarity). All analyses
were limited to those A and C items for which the corresponding AC inference was
correct during the test.
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We searched for each of these four effects using searchlights restricted to voxels
in three a priori anatomical ROIs: bilateral HPC, MPFC, and IFG. We also ran
searchlight analyses across the whole brain, unrestricted to any particular region.
ROIs were defined on custom coronal (HPC) and MNI (MPFC and IFG) template
brains (Supplementary Methods) and reverse normalized to each participant’s
functional space to carry out the searchlight analyses. Group ROIs were used to
ensure that the spatially normalized statistical maps (see below) would be
overlapping, thereby enabling comparisons across participants.

A spherical searchlight (radius¼ 3 voxels; volume¼ 123 voxels, except along
ROI boundaries) was swept across each anatomical ROI. For each sphere
(that is, centred on every voxel in the ROI), a statistic of interest was calculated
from the item-level pairwise comparisons of activation patterns as follows. Pairs of
item-level activation patterns from pre- and post-study exposure phases were
compared separately using Pearson’s correlation, transformed to Fisher’s z and
subtracted, resulting in a post–pre similarity score for each pair of items (hereafter,
change in (D) similarity). Changes in pairwise similarity for comparisons of interest
were then averaged to yield mean within- (that is, the average of all within-triad
(for example, A1–C1) comparisons) and across-triad (that is, the average of all
across-triad (for example, A1–C2) comparisons) D similarities for blocked and
intermixed learning. Importantly, for both within- and across-triad D similarity
calculations, comparisons were limited to pairs of activation patterns extracted
from different runs. This was performed to ensure independence of the activation
patterns going into D similarity calculations, thus preserving the false-positive
rate61. Across-triad comparisons were additionally limited to items from the same
learning condition (for example, a blocked A item would never be compared with
an intermixed C item; Fig. 2, white cells).

For each sphere in the searchlight, contrasts representing the four effects of
interest were computed (Fig. 2, inset barcharts) using the mean D similarities as
follows: (1) integration, blocked within–blocked acrossþ intermixed within–
intermixed across; (2) separation, blocked across� blocked withinþ intermixed
across–intermixed within; (3) blocked - integration interaction, blocked within–
blocked acrossþ intermixed across–intermixed within; (4) intermixed -
integration interaction, intermixed within–intermixed acrossþ blocked across–
blocked within. Contrasts were converted to P values by comparing the observed
contrast value to a permutation-based null distribution. We generated null
distributions by randomly shuffling within- and across-triad D similarity
correlation values (within learning condition; equivalent to shuffling within- and
across-triad comparison labels) and re-computing the statistic of interest for each
of 1,000 iterations. This P value was assigned to the centre voxel of the current
sphere; the sphere was then shifted and the entire procedure repeated. Conducting
the searchlight RSA for each participant resulted in four P value maps for each of
the three anatomical ROIs and for the whole brain.

Each participant’s voxelwise P values were converted to z-statistics (allowing for
both positive and negative values) and the resulting maps were warped to the MNI
template (resampled to the functional dimensions of the present study, 1.7 mm
isotropic) by applying nonlinear transformations computed previously using
ANTS63. Z-statistics were then combined across the group using nonparametric
one-sample t-tests implemented in Randomise68, part of FSL. For the whole-brain
analysis, statistics images were first masked to exclude white matter. We then
applied a primary voxelwise threshold of Po0.01 (uncorrected) to all group
statistics images to identify those voxels surpassing this initial P value threshold.
Significant cluster sizes within each anatomical ROI (HPC, MPFC, and IFG) and
across the whole brain were determined using Monte Carlo simulations
implemented in 3dClustSim, part of AFNI69. Cluster sizes that occurred with a
probability of less than 0.05 across 2,000 simulations were considered statistically
significant. This was performed separately for each ROI and for the whole brain,
restricted to grey matter. Follow-up analyses were also conducted in which we
determined the within- versus across-triad D similarities for blocked and
intermixed learning conditions separately (Supplementary Methods).

HPC volume-D similarity analysis. We next investigated the relationship between
measures of HPC structure and coding strategy. Specifically, we related the volume
of HPC subregions (head, body, and tail) to the neural evidence for integration and
separation from the RSA described above. We tested the hypothesis that HPC head
volume would relate to the degree of integration, particularly for blocked triads.

We extracted bilateral HPC head, body, and tail volumes for each participant.
To account for differences in overall head size (approximated by intracranial
volume, derived from Freesurfer62) across participants, HPC volumes were
adjusted using an analysis of covariance approach70. As our neural similarity
measures, we extracted average z-statistics representing integration for blocked and
separation for intermixed conditions for each participant across the whole
anatomical HPC ROI in template space. We then related HPC subregion volumes
to neural similarity using Pearson correlation. We also performed two multiple
regressions on z-scores, with HPC head, body, and tail volumes as independent
variables and neural evidence for integration in the blocked condition and
separation in the intermixed condition, respectively, as the dependent measures.
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