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ScienceDirect
Recent evidence demonstrates that new events are learned in

the context of their relationships to existing memories. Within

the hippocampus and medial prefrontal cortex, related

memories are represented by integrated codes that connect

events experienced at different times and places. Integrated

codes form the basis of spatial, temporal, and conceptual

maps of experience. These maps represent information that

goes beyond direct experience and support generalization

behaviors that require knowledge be used in new ways. The

degree to which an individual memory is integrated into a

coherent map is determined by its spatial, temporal, and

conceptual proximity to existing knowledge. Integration is

observed over a wide range of scales, suggesting that

memories contain information about both broad and

fine-grained contexts.
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Introduction
Although episodic memory research often focuses on

representation of discrete events, memories can extend

beyond direct experience by connecting information

encountered at different times or places [1,2]. For

instance, learning your way around a new town involves

gradually learning about landmarks and their relative

positions. You might learn about one set of landmarks

on one trip through the town and an overlapping set on a

different trip. An effective way to represent the paths
www.sciencedirect.com 
taken on both trips is through a common map that

represents the relationships between landmarks experi-

enced at different times. A similar process can support

forming maps of social relationships [3,4]; for example,

meeting a woman and her son, then later meeting the

woman’s husband, one can infer that the man and the boy

are father and son.

These types of knowledge structures, known as cognitive

maps [5], are thought to rely on memory integration.

Memory integration is a dynamic process wherein new

events interact with existing knowledge [1]. For memory

integration to occur, a new event that overlaps with prior

experience (e.g., meeting the husband) must trigger

reactivation of a prior related episode (initially meeting

the woman and her son); new information may then be

integrated into the reactivated memory (connecting the

boy with his father in memory) [1,6]. As a result of

integration, the two events are represented with over-

lapping neural codes, in which elements common to both

events act as nodes linking the two memories [7,8]. Such

links allow representation of information beyond direct

experience and can support flexible behaviors [1], such as

taking a shortcut between places in a new town.

Memory integration is thought to be supported by bidi-

rectional interactions between hippocampus and medial

prefrontal cortex (mPFC) [9�,10]. Reactivation of related

memories during new events is mediated by hippocampal

pattern completion processes that allow for reinstatement

of entire memory traces from overlapping input [11,12].

Medial PFC, which is thought to represent mental mod-

els that guide behavior [13,14], may further bias hippo-

campal pattern completion to the most relevant prior

knowledge [9�]. Hippocampus then signals deviations

between current events and reactivated memories, trig-

gering memory updating [1,15,16]. Finally, new content is

integrated with existing mental models via hippocam-

pal — mPFC interactions [17–19]. During integration,

mPFC biases hippocampal encoding processes to empha-

size representation of features common to multiple

events [20�,21], resulting in cognitive maps that use

overlapping neural codes to represent the relationships

among discrete learning episodes [22��,23]. Here, we

review recent evidence that hippocampal — mPFC

memory integration mechanisms support the formation

of cognitive maps across different domains of experience,

including space, time, and concepts. Hippocampus and

mPFC may organize information about spatial, temporal,
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and conceptual relationships in similar ways, allowing for

the formation of flexible knowledge about many different

aspects of the world. Furthermore, memory integration

occurs simultaneously at different spatial, temporal, and

conceptual scales, which may facilitate learning about

both detailed features and broader contextual attributes

that are shared across events.

Integration of spatial experience
The seminal work of Tolman first showed that memories

of recently traveled routes are combined with memories

of previously traveled routes to create an integrated map

of the environment [5]. More recent evidence indicates

that representations of past and present spatial trajecto-

ries are simultaneously active within hippocampus during

learning [24–26], providing an opportunity for links to be

formed among different spatial experiences in an envi-

ronment. Reinstatement of behaviorally relevant memo-

ries within hippocampus during spatial learning may be

particularly dependent on top-down influence from

mPFC [10]. When rodents make decisions that depend

on spatial context, mPFC drives hippocampal responses

[9�], suggesting that mPFC coordinates reinstatement of

hippocampal memory representations that are most rele-

vant to ongoing experience [27]. Increased hippocam-

pal — mPFC coupling is also observed during spatial

memory retrieval in humans [28,29], and such coupling
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has been further shown to support individuals’ ability to

connect past and present experience [17,18,30].

Memory integration mechanisms may cause events (e.g.,

encountering landmarks) experienced at different times

within the same spatial environment to be represented by

overlapping neural responses within hippocampus. Evi-

dence from rodents has revealed highly structured hippo-

campal population codes, wherein responses are similar

for objects that share spatial context or position informa-

tion [33] as well as for locations that share relationships

[34]. To represent cognitive maps, the similarity between

hippocampal representations of events experienced

within an environment should scale with their distance

from one another in the environment. Events experi-

enced close together in space should be represented by

highly overlapping hippocampal populations, while

events experienced in more distant locations should

evoke less similar hippocampal responses (Figure 1a).

Human electrophysiological data shows that when parti-

cipants recall objects learned within a virtual environ-

ment, hippocampal place-cell activity is highest for loca-

tions closest to an object’s learned location, dropping off

with increasing distance from the object (Figure 1b) [31].

Moreover, human neuroimaging data indicate that hip-

pocampal patterns for individual objects experienced

in different locations within a virtual town scale with
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individual’s subjective memory for their distance in space

[35�]; objects judged as more spatially proximal evoke more

similar hippocampal activation patterns after learning.

Collectively, these findings indicate that reactivation of

prior spatial experience during new learning results in the

formation of integrated spatial maps within the hippo-

campus. Importantly, such maps include information not

only about directly traveled paths, but also routes through

the environment that can be inferred from relationships

among those traveled [36–38]. When directly experienced

routes to a goal are blocked, the integrated hippocampal

map can thus support flexible navigation via novel, alter-

nate paths [39–41]. The mPFC may resolve interference

by biasing the hippocampus to retrieve the behaviorally

relevant route [42,43]. Reactivation of integrated spatial

maps also facilitates new learning. Work in rodents has

shown that integrated spatial maps provide a framework

for rapid learning of new object-location associations in

the same environment [44,45]. Reactivation of hippocam-

pal spatial maps also facilitates learning in new environ-

ments that share properties with existing maps [24], thus

allowing for generalization of spatial experience to novel

contexts.

The physical similarity between environments or events

within an environment may be an important boundary

condition that determines which events are combined

into a coherent cognitive map of space. A new spatial

experience that shares many features with an existing

memory may be more likely to trigger reactivation of the

related memory than an event that shares fewer over-

lapping features. As a result, increased physical similarity

among spatial experiences may be associated with an

increased likelihood of integration. Consistent with this

idea, population responses within the CA1 subfield of the

rodent hippocampus scale linearly with the number of

spatial features shared across environments [46]; the

greater the number of shared features, the greater

the overlap in the CA1 population response. However,

the integration boundaries may be different across hip-

pocampal subfields [47]. In contrast to CA1, CA3 popula-

tion responses overlap only when environments are

highly similar, suggesting that the CA3 subfield has a

higher threshold for integration [46]. One possibility for

future study is to explore whether different hippocampal

subregions support different levels of memory integration

that represent the similarities among events in terms of

whether they share fine details or global characteristics.

Representation of temporal context through
memory integration
Similar to maps of space, memory integration in hippo-

campal and mPFC networks may code the temporal

context of events by representing temporally proximal

events with overlapping neural ensembles (Figure 1c).

Lesions to the hippocampus in rodents and humans
www.sciencedirect.com 
impair the ability to extract temporal regularities from

the environment and remember the sequential order of

events [48,49], suggesting a critical role for the hippo-

campus in temporal integration. Recent evidence sug-

gests that temporal proximity affects memory integration

at a range of timescales, which involve distinct mecha-

nisms [50]. Memory integration at time scales on the order

of seconds may be organized by ‘time cells’ in the

hippocampus and mPFC, which respond at specific tem-

poral intervals during task performance [51,52]. Compu-

tational modeling suggests that, like place cells, time cells

may provide a map for organizing sequences of memories

[53]. Integration of new memories into an existing tem-

poral map may facilitate learning about the relative timing

of overlapping sequences of events [54]. For example, if a

musician learns to play a song, then later learns a new

introduction to the song, memories of these sub-

sequences may be integrated to form a complete song

timeline.

Human neuroimaging data has shown that hippocampal

[55–57] and mPFC [58] activation patterns reflect the

temporal organization of events that occur seconds apart.

In these studies, hippocampal and mPFC activation

patterns are more similar for items that are seen in

immediate succession to one another [55,56,59]. Similar

to maps of space, the degree of similarity in these regions

scales with the temporal distance among items [35�,56,58]
and, in the case of hippocampus, is related to individuals’

subjective estimates of temporal proximity [35�,56]. In

rodents, the temporal context of individual items in a

sequence can be decoded from CA1 ensembles, and

sequence coding at the single cell and ensemble level

is correlated with sequence memory [60�]. Neuroimaging

has also revealed coding of sequential position informa-

tion within human hippocampus that relates to memory

performance [61].

Notably, integration of memories at longer timescales, on

the order of minutes [62] as well as days and weeks

(Figure 2c) [63], is also observed within hippocampus.

Memory integration across longer temporal intervals may

result from a different mechanism than that supported by

time cells. Temporal proximity at longer time scales may

promote integration through a memory tagging and allo-

cation mechanism, whereby neurons and synapses

recruited to represent a recent episode are more readily

reactivated during new events that occur within hours of

the original episode [32��,50,64]. Recruitment of the same

neural ensembles through tagging and allocation would

thus result in overlapping population codes for events that

occur within minutes and hours of one another as

observed in CA1 of rodents (Figure 1c) [32��] and CA1

and mPFC in humans [16,22��]. Similarly, neurogenesis

in the dentate gyrus of hippocampus may affect memory

allocation on longer scales of days and weeks, linking

memories encoded at similar times while avoiding
Current Opinion in Behavioral Sciences 2017, 17:161–168



164 Memory in time and space

Figure 2

Posterior

Anterior

(a) (b)

Hippocampus ERC

N
eu

ra
l d

is
ta

nc
e

in
 a

nt
er

io
r 

hi
pp

oc
am

pu
s

1 Day 1 Week 1 Month

Hippocampal place fields
Posterior— Precise spatial position   

Anterior—Coarse spatial position   

Hippocampal time coding(c)

log10(time)

Cross-event  rep resentation(d)

Human

Dorsal

Ventral

Rodent

Posterior –  Separation

Anterior –  Integration

Current Opinion in Behavioral Sciences 

(a) Illustration of the hippocampal long axis in rodent and human. Ventral and dorsal hippocampus in rodent correspond to anterior and posterior

hippocampus, respectively, in human. ERC: entorhinal cortex. Adapted from Ref. [78]. (b) Hippocampal place fields differ in size along the

hippocampal long axis; place fields in anterior hippocampus are larger than those observed in posterior hippocampus. Smaller place fields in

posterior hippocampus may support coding of detailed event information (such as precise spatial position), whereas larger place fields in anterior

hippocampus may integrate information across spatial positions to support coding of global context information. Adpated from Ref. [79]. (c)

Anterior hippocampus represents memories for real-world events more similarly when they occur closer together in time. The temporal

organization of memories within anterior hippocampus is even apparent at long time scales, such as one week and one month. Adapted from Ref.

[63]. (d) Memory elements that share a common association with an overlapping item are represented differently within anterior and posterior

hippocampus. Anterior hippocampal activation patterns become more similar for elements that share relationships, reflecting integration of

overlapping events. In contrast, posterior hippocampal activation patterns for those same elements become more dissimilar after learning,

reflecting the formation of orthogonal representations for overlapping events. Adapted from Ref. [22��].
interference between temporally distant events in mem-

ory [65]. Through these different mechanisms, hippo-

campus and mPFC may come to represent the temporal

context of individual events at different time scales, from

fine (e.g., position in a short sequence of events) to

broad (e.g., whether an event happened one week or four

weeks ago).

In addition to providing a map of temporal context,

integration may support flexible generalization of infor-

mation across episodes that share temporal context. For

instance, a study examining hippocampal ensemble

responses in rodents found that memories that are

encoded close together in time (within 5 hours) are

represented with overlapping populations of CA1 neu-

rons, with the amount of overlap predicting the degree of

fear responding that generalized across the two memories

(Figure 1c) [32��]. However, there may be important

boundary conditions on the degree of integration and

generalization observed across longer time intervals.

Although reactivation of related memories has been

found to promote integration [17], a recent study found

that memories encoded on different days were less likely

to be integrated compared to memories encoded on the

same day, even when controlling for the amount of

reactivation [66]. Future work is needed to determine

precisely how different mechanisms for temporal coding

facilitate generalization of information across episodes.
Current Opinion in Behavioral Sciences 2017, 17:161–168 
Integrated maps of conceptual space
Emerging evidence suggests that the same mechanisms

that support integration of spatial and temporal informa-

tion may also play a key role in our ability to acquire

concepts [67]. Concepts organize our experiences by

highlighting shared features and allow for meaningful

generalizations in novel situations. Acquiring new con-

cepts requires extracting information across multiple

individual learning experiences to learn both what fea-

tures are common to concept exemplars and what features

differentiate between concepts. As a result of learning,

concept representations emphasize diagnostic features

for a given concept, rather than the overall perceptual

similarity of individual stimuli (Figure 1d). When pre-

sented with a stimulus to be assigned to a concept,

hippocampal — mPFC interactions may trigger reactiva-

tion of similar, concept-relevant learning experiences.

Medial PFC also influences hippocampal encoding by

compressing memory representations to emphasize fea-

tures that capture commonalities across events [21], con-

sistent with its hypothesized role in forming mental

models of latent structures that are not directly observ-

able [13,14,68]. The retrieved memories may then be

used to predict a concept label for the current experience.

The outcome of that prediction may then lead to integra-

tion of the new exemplar into an existing concept or

formation of a new concept representation. In this way,

learning concepts requires similar computations and
www.sciencedirect.com
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representations as learning about the spatial and temporal

regularities of the environment [67].

Electrophysiological data from human patients indicates

that hippocampal neurons show high selectivity to the

conceptual rather than the perceptual features of events

[69]. Moreover, hippocampal responses scale with the

conceptual novelty of experiences [70,71], and such sig-

nals may be critical to concept formation and updating

[72,73]. Further evidence for the role of the hippocampus

and mPFC in formation of conceptual maps comes from a

set of recent studies that use representational approaches

to neuroimaging data analysis [20�,74�,75]. These studies

have shown that the similarity of hippocampal [20�,75]
and mPFC [74�] activation patterns between individual

concept exemplars scales with their distance in a learned

conceptual space; exemplars of the same concept evoke

more similar activation patterns in hippocampus and

mPFC and are distinct from exemplars of different con-

cepts (Figure 1d). In one case, the conceptual organiza-

tion observed in medial temporal lobe and mPFC regions

followed a grid-like organization that is commonly

observed during spatial navigation and imagery [74�],
providing a direct link between spatial and conceptual

representation within these regions. Additional evidence

suggests that hippocampal — mPFC interactions are crit-

ical when conceptual knowledge is applied to new situa-

tions with the same underlying conceptual structure

[9�,76]. Collectively, these results indicate that individual

memories are integrated through hippocampal — mPFC

interactions to create conceptual knowledge that supports

flexible decisions when confronted with new stimuli or

environments.

The scale of integration differs between
hippocampal subregions
The evidence reviewed thus far indicates that integration

of spatial, temporal, and conceptual relationships may

occur at a variety of scales from fine-grained to broad.

Different scales of integration may be linked to the

function of different hippocampal subregions. For

instance, the spatial remapping properties of CA1 and

CA3 noted above [46] suggest that CA1 may integrate

information across a broader set of contexts than CA3,

which forms overlapping representations for only highly

similar environments. Computational modeling further

indicates that CA1, but not CA3, representations support

extraction of temporal and associative regularities from

the environment and enable inference about the relation-

ships among episodes [47]. Human and rodent data have

also exclusively linked memory integration processes to

CA1 [16,32��]. The connectivity of CA1 may explain its

privileged role in memory integration. It receives input

about incoming sensory information from entorhinal cor-

tex simultaneously with memory-driven expectations

derived from CA3 pattern completion processes [77];

networks of CA1 cells that represent new content and
www.sciencedirect.com 
existing memories may therefore become linked due to

their coactivation within CA1.

Differences in representational scaling have also been

observed along the long axis (ventral–dorsal in rodents,

anterior–posterior in humans) of hippocampus (Figure 2a)

[22��,23]. Place cells in anterior hippocampus have larger

receptive fields than in posterior hippocampus

(Figure 2b) [78–80]. Place field gradients along the hip-

pocampus axis may thus support integration of experi-

ences at different spatial, temporal, and conceptual scales.

For instance, large place fields in anterior hippocampus

are well suited for integrating events that occur at differ-

ent positions within the same environment, while smaller

place fields in posterior hippocampus allow distinct cod-

ing of events experienced in the same environment [81].

It is possible that temporal representations may vary in

scale along the hippocampal long axis in a similar manner

to spatial representations, with larger timescales repre-

sented in anterior hippocampus and smaller timescales in

posterior hippocampus [82]. Consistent with this hypoth-

esis, anterior hippocampus is more likely to demonstrate

integrated codes for overlapping events that are separated

by long time intervals than posterior hippocampus

(Figure 2c, d) [22��,23,63]. The different representational

capacities of anterior and posterior hippocampus may thus

simultaneously support behaviors that rely on different

levels of memory detail [83], with posterior hippocampus

supporting fine judgments relating individual memory

elements and anterior hippocampus supporting abstrac-

tions across broader experiential scales. There is also

evidence that anterior and posterior mPFC subregions

exhibit different levels of integration that mirror func-

tional differences along the hippocampal long axis [22��],
but more work is needed to determine whether human

mPFC subregions are functionally distinct.

Conclusions
Much of our knowledge is derived by forming links across

the individual events we experience. The findings

reviewed here indicate that structured knowledge about

the spatial, temporal, and conceptual relationships among

events arises from memory integration processes sup-

ported by the hippocampus and mPFC. By forming over-

lapping memory codes that integrate information

acquired at different times and places, our memories

extend beyond what we directly experience and can be

deployed flexibly to support behavior in new situations.

However, several open questions remain for future

research on memory integration. For instance, what are

the boundary conditions that determine when represen-

tations of overlapping memories are integrated rather

than separated, and how might we manipulate the forma-

tion of integrated codes of experience? While initial

findings suggest that the strength of existing knowledge

[18], the degree of memory reactivation during encoding
Current Opinion in Behavioral Sciences 2017, 17:161–168
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[17], the magnitude of memory-based prediction errors

[15], and task demands [84] all impact the likelihood of

integration, more work is needed to understand the full

complement of conditions that influence how we repre-

sent related episodes in memory. As noted above, differ-

ent memory circuits (e.g., anterior and posterior hippo-

campus) may integrate information at different scales. It

remains to be tested whether these circuits play function-

ally different roles in memory, with fine-scaled represen-

tation supporting decisions about relationships among

detailed event elements and integration at broader scales

supporting more abstract knowledge about the concep-

tual relationships among events. The fact that hippocam-

pus and mPFC continue to mature through the third

decade of life [85,86] further suggests that memory inte-

gration may have a prolonged developmental timecourse

that extends through adolescence, with corresponding

impacts on spatial, temporal, and conceptual learning

abilities. In reviewing the current state of knowledge

on memory integration, we hope to inspire future work

on the rich set of questions that remain.
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