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Summary

Acts of cognition can be described at different levels of anal-
ysis: what behavior should characterize the act, what algo-

rithms and representations underlie the behavior, and how
the algorithms are physically realized in neural activity [1].

Theories that bridge levels of analysis offer more complete
explanations by leveraging the constraints present at each

level [2–4]. Despite the great potential for theoretical ad-
vances, few studies of cognition bridge levels of analysis.

For example, formal cognitive models of category decisions
accurately predict human decision making [5, 6], but

whether model algorithms and representations supporting
category decisions are consistent with underlying neural im-

plementation remains unknown. This uncertainty is largely
due to the hurdle of forging links between theory and brain

[7–9]. Here, we tackle this critical problem by using brain
response to characterize the nature of mental computations

that support category decisions to evaluate two dominant,

and opposing, models of categorization.We found that brain
states during category decisions were significantly more

consistent with latent model representations from exemplar
[5] rather than prototype theory [10, 11]. Representations of

individual experiences, not the abstraction of experiences,
are critical for category decision making. Holding models

accountable for behavior and neural implementation pro-
vides a means for advancing more complete descriptions

of the algorithms of cognition.
Results

A fundamental and long-standing debate in category learning
is whether knowledge is based on representations of indi-
vidual instances of category members, known as exemplar
theory [5, 12], or an abstracted representation coding a
category’s prototypical features, known as prototype theory
[10, 11]. Over thirty years of debate in behavioral andmodeling
research has yet to resolve which of these theories best
describes how people represent category knowledge [13, 14].

We applied a novel approach to neuroimaging analysis to
inform the debate between exemplar and prototype theories
and guide neuroscientific study of how categorization occurs
in the brain. Participants (n = 20) performed a classic task
from the exemplar and prototype theory literature [12] that
involved learning to categorize objects (Figure 1A). Exemplar
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and prototype models were fit to each participant’s learning
behavior collected prior to scanning (see Supplemental
Information available online). Consistent with previous work
[13, 14], computational models of both theories provided
accurate accounts of individual participants’ behavioral re-
sponses during a scanned test phase (Figure 1B), with only
a single participant better fit by either model (Figure 1C; c2 =
5.34, p = 0.021).
Despite their equivalent behavioral predictions, the underly-

ing representations driving exemplar and prototype model
category decisions are fundamentally opposed. We captured
these model state differences with representational match,
a measure of summed similarity between a test object and
a model’s stored category representations. We chose repre-
sentational match as the latent model signature of interest
for three reasons. First, representational match summarizes
critical computations in the categorization process for the
exemplar and prototype models (see Supplemental Informa-
tion). Second, representational match is strictly tied to the
model parameters optimized for categorization and charac-
terizes the attention and decision processes necessary for
the categorization decisions proposed by the two models. If
the models are accurately characterizing categorization, then
evidence of their mechanisms should be found in brain
response. Third, representational match is a latent signature
that teases apart the two models. Although the same summed
similarity calculation is used for both models, the internal
representations to which a test object is compared are vastly
different, leading to different representational match functions
(Figure 2A). The twomodels might predict the identical behav-
ioral response on any given trial, but the latent representations
that support that decision would be very different. By relating
brain patterns to these latent model signatures, we can deter-
mine which model conception accurately reflects the nature of
representations in this task.
We examined the consistency between brain response and

representational match from the exemplar and prototype
models by conducting whole-brain multivariate pattern anal-
ysis (MVPA [15]) to predict representational match for each
test object. Representational match predictions for each
participant were derived for both models from parameters
optimized for behavioral fits. The mutual information (MI)
between cross-validated MVPA output and model representa-
tional match served as an index of the consistency between
brain states and latent model signatures during category
decisions. MI measures the amount of shared information
between brain and model. In this context, higher MI reflects
a richer mapping between the category representations sup-
porting a model and the underlying information in patterns
of brain response during category decisions.
To first validate our approach, we performed amodel recov-

ery study by simulating voxel activations corresponding
to exemplar or prototype-based representations and tested
whether or not our technique could identify the cognitive
model from the simulated neural activity. We evaluated
MVPA output of activation patterns from 5,000 simulated
voxels with MI. In each simulation, 5% of the simulated voxels
were assigned activation profiles corresponding to the
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Figure 1. Learning and Testing Trial Schematics

and Behavioral Modeling Results

(A) Participants were first trained outside of

the scanner to categorize nine training objects

(five category A and four category B members;

20 repetitions of each stimulus; see Table S1)

with corrective feedback. During a scanned test

phase, participants were tested on the nine

training objects and seven novel objects (18 rep-

etitions of each stimulus; no feedback).

(B) For each training stimulus (A1–A5, B1–B4)

and testing stimulus (T1–T7), mean probability

of participants’ ‘‘A’’ category responses during

the testing phase (gray) and mean predicted

responses from exemplar (green) and prototype

(blue) models fit to each participant.

(C) Prediction errors from both models for each

participant showed that only one participant

was better fit by either model (green circle).
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representations of either the exemplar or prototype model.
The remaining voxels’ activation profiles were modeled as
Gaussian noise (see Supplemental Information). MVPA was
performed on the simulated data sets to recover the
embedded representational match signatures of the two
models. The simulation results showed successful recovery
with higher MI between the exemplar model and simulated
exemplar voxels (meanMI = 3.06) than the simulated prototype
voxels (meanMI = 0.01). Similar results were found for the pro-
totype model and the simulated prototype (mean MI = 2.76)
versus exemplar voxels (mean MI = 0.07). Consistent results
were found in simulations that varied the proportion (1%–
25%) of simulated voxels with activation profiles from model
representations. Notably, despite the relatively higher model
complexity and variability in the latent model measure for the
exemplar compared to the prototype model, the prototype
model was still preferred when it was the model generating
the neural activity. These simulation results suggest our
approach can identify cognitive models that are reflected
in coherent brain states and favors models that share rich
relationships, i.e., more MI, with brain response.

In applying this approach to our experimental data, we
found that the exemplar model wasmore consistent with brain
response than the prototype model across all participants,
as measured with MI (t19 = 4.39, p = 0.0003; Figure 2B) and
correlation (mean rGCM: 0.67, mean rMPM: 0.46, t19 = 3.24,
p = 0.004). The greater consistency for the exemplar model
was not due to greater complexity of the exemplar model
relative to the prototype model, as the exemplar model was
alsomore consistent with brain response than an overparame-
terized saturated model (see Supplemental Information and
Figure S1). A region of interest analysis (Figure S2 and Table
S1) showed converging evidence in that activation patterns
in lateral occipital and posterior parietal cortex were more
consistent with the predictions of exemplar than prototype
theory. Critically, using brain response for model selection
greatly increased the sensitivity of analysis at the individual
participant level beyond that offered from only behavioral
measures. Indeed, 13 participants showed greater brain-
model consistency with the exemplar
model and one participant with the pro-
totype model (Figure 2C). The remaining
six participants had brain states equally
consistent with both models.
Using brain response for model selection suggests that
category decisions are supported by representations of cate-
gory exemplars. A critical mechanism of exemplar theory is
selective attention to diagnostic information [5]. It is hypo-
thesized that this attention mechanism biases exemplar
representations toward informationmost relevant for category
decisions. To identify brain regions consistent with attention-
biased category exemplars, we performed a representational
similarity analysis (RSA) [16]. We targeted brain regions with
neural patterns for category exemplars that matched the
attention-weighted pairwise similarity structure predicted by
the exemplar model. For each participant, exemplar model
dissimilarity matrices (DMs) were derived from pairwise dis-
tances between stimuli taking into account the fitted attention
weight parameters. Neural DMs were derived for each parti-
cipant from pairwise correlation distances between neural
patterns of the stimuli. The searchlight mapping technique
[17] was used to compare exemplar model similarity to neural
similarity in localized regions throughout the whole brain. The
maps from group analysis (Figure 3A) showed significant
correlation between exemplar model and neural similarity in
lateral occipital cortex (LO), inferior parietal cortex, inferior
frontal gyrus (IFG), and insular cortex. In contrast, significant
correlation between neural similarity and DMs derived from
the physical similarity of training stimuli, a condition akin to
the exemplar model with no selective attention, was restricted
to primary visual cortex (Figure 3B).

Discussion

Recent efforts linking algorithmic models to brain measures
have offered a sophisticated advance in analyzing fMRI data.
These approaches correlate measures of model processes
with fMRI data to identify brain regions whose activation
profiles during a cognitive task are predicted by the model’s
algorithms [18]. These model-based fMRI studies have
informed our understanding of the role of individual brain
regions in specific computations [19–21], but the vast majority
of neuroimaging studies are conducted through the lens of



A B C Figure 2. The Consistency between Latent Model

States and Brain States

(A) The internal model measure representational

match, the extent a test object activates stored

category representations, varies between exem-

plar (green) and prototype (blue) models, offering

a discriminatory trial-by-trial measure of the

underlying categorization process.

(B) The mutual information (MI) between re-

sponses of brain patterns as revealed by multi-

variate pattern analysis (MVPA) and represen-

tational match was higher for the exemplar

relative to the prototype model (mean 6 95%

confidence interval). The exemplar model also

outperformed an overparameterized saturated

model and a model with no attention mechanism (Figure S1). Similar results were found in ROI-based analyses (Figure S2).

(C) Using brain response for model selection greatly increased the sensitivity of analysis beyond that offered from only behavioral measures with thirteen

participants better fit by the exemplar model, one better fit by the prototype model, and six fit equally well by both models.
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only one cognitive model [22]. This narrow focus assumes the
studied model is an accurate description of the underlying
cognitive phenomena, thereby limiting theoretical interpreta-
tion. In studies that do compare models [18, 20], evaluating
the link between model processes and neural response has
been limited to correlations with independent voxel activa-
tions. These model-based analyses are confirmatory in nature
and are not ideally suited for model comparison.

Most domains of inquiry in human cognition involve intense
debate and competing models. We have focused on one of
these fundamental debates in the current study: are the repre-
sentations underlying category decisions more concrete or
abstract? By bridging levels of analysis with the proposed
novel method, we can determine whether the radically
different algorithmic-level assumptions of exemplar and pro-
totype models are more consistent with the underlying neural
patterns evoked during category decisions, thus providing
strong evidence toward resolving this long-standing debate.
Algorithmic models should be favored to the extent that
continuous measures of the model’s state (e.g., activation of
internal representations) during categorization is tracked by
trial-by-trial measures of brain states revealed with pattern in-
formation analysis [15, 23]. By relating patterns of activation
over multiple voxels to internal measures of competing algo-
rithmic models, we have used brain activation measures to
determine which categorization algorithm the brain uses and
how that algorithm is implemented in the brain.

We contend that this direction of analysis, using brain states
to infer model states, is the best method to isolate the brain’s
algorithms. Many different brain states can manifest as a
single mental state, but different mental states necessitate
different underlying brain states. Multivariate techniques of
fMRI analysis that leverage this analysis direction [15] have
led to breakthroughs in understanding low-level stimulus
[24–26] and semantic [23, 27] representations. Our approach
extends beyond these existing techniques by marrying the
advance of multivariate methods with model-based predic-
tions of brain response to fill in the critical gap of linking theory,
brain, and behavior and quantitatively determine the degree of
correspondence across levels of analysis. In applying this
approach to category learning, we found that brain response
during categorization decisions is most consistent with the
specific computations and representations posited by exem-
plar theory.

Unlike existing methods that attempt to describe isolated
voxel activation, favoring models that are correlated with
more voxels [18], our novel method favors those models that
are predictable by coherent brain states regardless of whether
those states are found in activation patterns that reach across
the extent of the brain or are localized to specific regions.
Of course, this method shares the limitations of any model
selection approach, namely that selection is respective to a
particular set of tasks, data, and models [28, 29]. In the current
task and category structure, which has been used as a
benchmark for models of categorization [6, 12–14], we found
evidence strongly in favor of the exemplar model over the
prototype model. While this classic debate that has raged
for over thirty years cannot be resolved with one study, we
provide strong neural evidence for the role of exemplar repre-
sentations in category decisions. Applying this approach of
searching for themodel in the categorizing brain to other tasks
and category structures will lead to a more complete theory of
categorization.
We were able to identify a network of brain regions tracking

the representations of the exemplar model with the follow-up
RSA. Specifically, we were able to target exemplar theory’s
mechanism of selective attention, finding attention-biased
exemplar representations in LO and posterior parietal cortex.
LO is known to be critical for representation of objects [30],
notably showing effects of representational changes as a
result of category learning [31–33]. That activation patterns in
LO correlate with exemplar representations builds on these
findings to suggest that LO plays a critical role in representing
individual experiences of category members and that these
LO-based representations are brought to bear during category
decisions.
Processing within posterior parietal cortex has been

implicated in goal-directed, top-down selection of relevant
information [34], episodic memory retrieval [35, 36], and
experience-dependent representational changes during per-
ceptual learning [32, 37]. Although parietal activity related
to category learning has been observed previously [38–40],
the specific mechanistic role of parietal regions in category
decisions has been underexplored. The correlations found
here between parietal areas and attention-biased exemplar
representations offer a novel step in characterizing the
parietal cortex’s computational role. Successful learning in
the current task depends on learning the appropriate atten-
tion weights to stimulus dimensions. Our findings suggest
parietal cortex plays a critical role in the attentional pro-
cesses required for encoding and retrieval of stored exemplar
representations.
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Figure 3. Representational Similarity Analysis of Object Similarity

Searchlight analyses of representational similarity compared the similarity

between neural representations of the objects with the pairwise similarities

as predicted by the exemplar model. Correspondence between the atten-

tion-biased exemplar representations and neural representations extended

into lateral occipital, posterior parietal, and right lateral prefrontal regions

(p < 0.05, familywise error rate corrected). In contrast, the correspondence

between neural representational similarity and the representational similar-

ity as predicted by a model with no selective attention was restricted to

early visual areas (similar results were also found with the prototype model;

see Figure S3).
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Lateral prefrontal regions, including insular cortex and IFG,
were also linked to attention-biased exemplar representa-
tions. Previous work has highlighted the role of these regions
in categorization and concept learning [41–43], specifically in
representing evidence for perceptual decision making [44].
Most notably, processing in anterior insula and right IFG has
been associated with active maintenance of information for
comparative processing [45] that is sensitive to category
boundaries [46]. Our results extend beyond these previous
findings by showing that localized activation within lateral
PFC tracks the specific similarity computations of attention-
weighted exemplar representations during categorization.

The current findings make clear that multiple brain regions
are engaged during category decision making, a conclusion
consistent with previous model-based fMRI studies of catego-
rization [21, 43]. We extend beyond this work by presenting
the first results to match computational predictions from
formal theories of category learning to the information in
patterns of brain response. Critically, we use the consistency
between brain and model for theory selection, finding greater
consistency with exemplar theory.

Yet, important questions remain. Our results suggest that
concrete experiences during learning are stored in similarity-
based cortical representations and that these representations
are activated during later categorization. Understanding how
activation of exemplar memory traces gives rise to coherent
brain states that predict exemplar representational match
will further characterize the mechanisms of categorization. It
is worth noting that prototype model predictions were not
completely inconsistent with brain response. This finding
may suggest that prototype mechanisms do explain some-
thing about underlying brain states, but the exemplar model
explains decidedly more in this categorization task. A limita-
tion of the current study is the focus on the postlearning
processes and representations of categorization. Using the
proposed model-based fMRI method to investigate the devel-
opment of category representations and tuning of attention
weights over the course of learning [3, 21, 39] will shed light
on the algorithms of category learning and how these algo-
rithms are implemented in the brain.
Bridging levels of analysis represents a fundamental shift in

testing algorithmic models of cognitive theories. The novel
approach detailed here has broad implications for cognitive
neuroscience research beyond the exemplar versus prototype
debate we explore in the current paper [47]. Holding models
accountable for not only behavior but also neural implemen-
tation provides a means for forging links between theory and
brain and advancing more complete descriptions of the algo-
rithms of cognition.

Supplemental Information

Supplemental Information includes three figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online
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