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Although a number of studies have highlighted the importance of
offline processes for memory, how these mechanisms influence
future learning remains unknown. Participants with established
memories for a set of initial face–object associations were scanned
during passive rest and during encoding of new related and un-
related pairs of objects. Spontaneous reactivation of established
memories and enhanced hippocampal–neocortical functional con-
nectivity during rest was related to better subsequent learning,
specifically of related content. Moreover, the degree of functional
coupling during rest was predictive of neural engagement during
the new learning experience itself. These results suggest that
through rest-phase reactivation and hippocampal–neocortical
interactions, existing memories may come to facilitate encoding
during subsequent related episodes.
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Numerous empirical studies (1–4) and theoretical accounts
(5, 6) highlight the importance of offline processes—such as

reinstatement of recent experience and enhanced interregional
communication—for episodic memory. It has been proposed
that through hippocampal (HPC)–neocortical interactions (6, 7),
memories are reactivated during periods of sleep and awake rest.
Such reactivation (or “replay”) is thought to support the strength-
ening and transfer of memory traces from the HPC to neocortical
regions for long-term storage, a process termed “consolidation.”
The functional significance of reactivation of recent experience for
memory has been demonstrated during awake rest using neuro-
physiological techniques in rodents (2) and, more recently, in
humans using pattern information analysis of functional magnetic
resonance imaging (fMRI) data (1, 3). For instance, more delay
period reactivation has been observed for stimuli that were re-
membered, relative to those that were forgotten in a subsequent test
(3). Moreover, studies have shown that the degree of HPC–
neocortical functional coupling during rest periods following
learning relates to later memory for the learned content (4).
This existing body of work demonstrates that rest-phase neural

signatures relate to memory for prior experiences. However, one
important quality of memory is that it is inherently prospective
(8); that is, memories are formed for maximal utility in future
situations. Whereas research shows that rest-phase reactivation
impacts memory for the reactivated content itself (1, 3), how this
mechanism might be prospectively advantageous remains un-
known. In the present study, we turn our attention to this
question: How does spontaneous reactivation of established
memories and enhanced HPC–neocortical connectivity during
rest affect learning during subsequent related episodes?
A number of theories underscore the highly interactive nature

of episodic memories (9, 10). One prominent view, “interference
theory,” highlights that existing knowledge may impair learning of
related content. A host of studies confirm this intuition; that is,
people often have worse memory for information that is related to
their existing memories relative to unrelated information, a phe-
nomenon termed “proactive interference” (11–13). However, this
impairment is not universally observed, even in the classic literature;
on the contrary, prior knowledge can also be beneficial to new
learning under some circumstances (14). For example, one study

showed a memory advantage for new responses paired with well-
learned old stimuli (i.e., stimuli previously learned with a different
response), a phenomenon known as “associative facilitation” (11).
Such facilitation may also extend to novel judgments that require the
simultaneous consideration of multiple memories (e.g., inferences).
Whereas these data and others (15) suggest that strong prior

knowledge may facilitate new learning, the neural mechanisms
supporting such associative facilitation are not well understood.
One possible explanation stems from a perspective known as “in-
tegrative encoding,” which describes how new memories are cre-
ated in relation to existing knowledge (16, 17). Mechanistically, it
has been proposed that when newly encountered content overlaps
with one’s stored memory representations, the neural patterns as-
sociated with that preexisting knowledge may be reactivated in the
brain during new learning (18–20). New episodes may then be
encoded in the context of these internally generated representa-
tions, connecting these related memories. A recent fMRI study
suggests that reactivation of existing knowledge during encoding of
new, overlapping events may strengthen preexisting memory traces,
making the prior knowledge itself less susceptible to interference
(18). Reactivation during learning has also been shown to support
novel judgments that span experiences (20), consistent with the
notion that this mechanism enables the linking of related memo-
ries. However, the potential impact of encoding-phase reactivation
on the new learning itself has not been addressed. That is, although
reactivation has been shown to strengthen both established mem-
ories and the connections among discrete experiences, it is as yet
undetermined whether this process also facilitates memory for-
mation for the new, related events through integration.
We propose that the degree to which memory processes are

engaged during offline periods influences whether prior knowledge
interferes with or facilitates new encoding. Importantly, interference
theory and integrative encoding make opposing predictions for
the impact of rest-phase processes on subsequent learning of
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How our brains capture and store new information is heavily
influenced by what we already know. While prior work dem-
onstrates that existing memories are spontaneously reactivated
and strengthened in the brain during passive rest periods, the
prospective benefits of spontaneous offline reactivation for fu-
ture learning remain unknown. Here, we use functional MRI to
interrogate how reactivation and interregional coupling support
the ability to learn related content in later situations. We find
that offline processing of prior memories is associated with
better subsequent learning. Our results provide a mechanistic
account of the circumstances under which prior knowledge can
come to facilitate—as opposed to interfere with—new learning,
serving as a strong foundation upon which new content is
encoded.
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related events. Both perspectives might predict that memories are
strengthened during offline periods; and that stronger memories are
more likely to be reactivated during learning of new, related events.
However, these perspectives diverge in their predictions for the
consequences of that reactivation on new learning. Although in-
terference theory would suggest that rest-phase strengthening of the
initially acquired information might lead to more “competition” and
thus worse memory for new, related content (21), integrative
encoding predicts the opposite. Because stronger memories are
more readily reinstated, they are also more likely to be “updated”
with new information during subsequent experiences. For this
reason, more engagement of rest-phase memory processing
might facilitate both the later encoding of related events and
novel judgments that span episodes. We sought to adjudicate
between these perspectives by investigating the impact of offline
reactivation and functional coupling on subsequent encoding of
distinct but related experiences.
We used a classic interference paradigm (11, 13) in which

adult human participants with prior knowledge encoded new,
overlapping pairs. We first trained participants (n = 35) on a set
of face–object associations (hereafter AB pairs, where “AB”
denotes a studied Aface–Bobject association) across four study–test
repetitions (Fig. 1A, Experimental Procedures, and SI Methods
and Results, Memory Task). We then collected fMRI data while
participants engaged in passive rest and encoding of both new
overlapping (BC) object–object pairs and nonoverlapping (i.e.,
unrelated; XY) object–object pairs in a single exposure. Impor-
tantly, the order of BC and XY learning was counterbalanced
across participants. After scanning, participants completed a cued
recall test for studied associations (BC and XY) and a surprise
test of inferential (AC) relationships. The AC inference test re-
quired participants to recall the Aface item that was indirectly

related to the Cobject cue through their common association with
Bobject, indexing each individual’s ability to combine remembered
associations across episodes. This paradigm enables investigation
of the neural mechanisms that modulate how existing memories
(AB) impact future learning (BC) and inference (AC), thus im-
proving our fundamental understanding of the interactive nature
of real-world memory.

Results
Behavioral Performance. As intended, AB pairs were well learned
by the fourth test block (mean ± SEM: 97.3 ± 0.9% correct recall;
Fig. 1B). We define proactive interference as performance on
overlapping BC relative to nonoverlapping XY pairs (i.e., XY − BC
accuracy), with higher values indicating more interference
of AB pair knowledge on new BC encoding. Importantly, BC
(11.7–86.7%, 41.5 ± 3.3% correct) and XY (10–78.3%, 42.4 ±
3.4% correct) were matched in terms of both content type and
number of presentations, allowing us to directly compare per-
formance in these two conditions. Interestingly, we observed
neither proactive interference nor facilitation across the group
(XY vs. BC performance: t34 = 0.40, P = 0.693; Fig. 1C); rather,
we found that the degree of proactive interference was highly
variable across individuals (Fig. S1A). This variability enabled
us to investigate how rest-phase processes following initial AB
learning modulate encoding of overlapping BC relative to con-
trol XY pairs. We also found that performance on AC inferences
(6.7–83.3%; 41 ± 3.5% correct)—which notably, require re-
trieval of the initially learned Aface item—paralleled BC mem-
ory, further demonstrating the strong nature of the AB memories
at the end of the experiment (SI Methods and Results, Analysis of
Behavioral Data). We also investigated how the strength of the
initially acquired AB pairs impacted later BC learning and AC
inference. We found that both within (Fig. S1B) and across
individuals, superior AB memory was associated with better
performance on overlapping BC pairs and AC inference judg-
ments (SI Methods and Results, Analysis of Behavioral Data).

Face Reactivation During Rest. We examined the impact of neural
engagement during the post-AB rest period on encoding of re-
lated BC information and AC inferences. Here, we focus on
reactivation of face information in face-sensitive regions of visual
cortex (e.g., fusiform face area, FFA). To measure spontaneous
reactivation during the rest period, we trained a pattern classifier
to distinguish between different types of visual content on the
basis of activation patterns in each participant’s functionally
defined FFA. Importantly, the classifier was trained on in-
dependent visual localizer data. The trained classifier was then
applied to each volume of the post-AB rest period (Fig. 2, Upper;
Experimental Procedures; and SI Methods and Results, Reac-
tivation: Pattern Classification Analysis).
We first examined the relationship between reactivation and

performance over time using a 60-volume (2 min) window swept
across the rest scan. For each window, we calculated a reac-
tivation index (defined as the mean classifier evidence for faces)
for each participant. We then related this reactivation index to
BC learning and AC inference using two approaches. As our
primary approach, we quantified the degree of facilitation for BC
encoding and AC inference by performing across-participant
partial correlations. [We used partial correlation to index the
degree to which prior memories facilitate versus interfere with
the acquisition of new, related knowledge. Because general as-
sociative memory ability (i.e., XY performance) was highly re-
lated to both BC memory and AC inference across participants,
we needed to statistically control for these differences to answer
our central question—how prior knowledge specifically impacts
overlapping encoding, relative to one’s general associative
encoding ability. Mathematically, this is accomplished by per-
forming a correlation on the residuals after regressing both
reactivation and BC or AC performance on the controlling
variable, XY performance. This analysis approach mirrors other
studies that control for various factors such as age (22, 23), sex
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Fig. 1. Experimental procedure and performance. (A) Participants encoded
AB pairs in four alternating study–test repetitions during the pretraining
phase (blue). Participants then studied new overlapping (BC; orange) and
nonoverlapping (XY; green) pairs during fMRI scanning. BC and XY study
blocks were interleaved with rest scans (yellow); the encoding order of BC vs.
XY was counterbalanced across participants. After scanning, memory for BC
and XY pairs (intermixed; orange/green) and AC inferences (pink) was tested
using cued recall. (B) AB memory performance as proportion correct on each
test block. Line represents the group mean; points show individual partic-
ipants. (C) Performance for nonoverlapping XY pairs (green), overlapping BC
pairs (orange), and AC inferences (pink). Bar heights represent group means;
points show individual participants. See also Fig. S1.
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(23), general cognitive ability (20, 24), or neural measures (25,
26).] Specifically, we interrogated the relationships between (i)
reactivation and BC memory performance and (ii) reactivation
and AC inference performance, after statistically controlling
for the effects of XY performance (our metric of general as-
sociative memory ability). This analysis was performed to in-
dex the unique relationship between memory reactivation and
later encoding of related information. As a secondary ap-
proach, we also investigated the individual relationships be-
tween reactivation and performance on related BC pairs, AC
inferences, and unrelated XY pairs using Pearson’s correla-
tion (SI Methods and Results, Reactivation: Pattern Classification
Analysis). However, we note that due to the high correlation
between XY pair memory and performance on both BC pairs
(r33 = 0.80, P < 1 × 10−8) and AC inferences (r33 = 0.81, P < 1 ×
10−8), these relationships are heavily influenced by general
associative memory and thus do not specifically reflect the
impact of prior knowledge on subsequent encoding of related
information.
We found a significant relationship between face reactivation

and BC performance controlling for XY that was unique to the
beginning of the rest period (partial correlation during first
2-min window; r32 = 0.44, P = 0.010; Fig. 2, Lower Left and Fig.
S2, Upper Left) and that was not observed for other classes of
visual content (Fig. S2, Upper Right). Reactivation during the
first 2-min window also tracked AC performance after control-
ling for XY memory (r32 = 0.40, P = 0.019; Fig. 2, Lower Right).
That is, participants who showed more face reactivation follow-
ing initial AB learning also showed superior memory for related
BC associations and AC inferences after controlling for general
associative memory ability. This finding can also be conceptualized
as a negative association between face reactivation and proactive
interference, i.e., less reactivation was observed for participants
who showed more proactive interference. Importantly, neither the
degree of reactivation nor its relationship to performance was
significantly impacted by differences in lag duration or encoding
order across participants (SI Methods and Results, Delay and
Encoding Order Analyses). Moreover, the relationship between

reactivation and performance was specific to the post-AB rest
scan. Reactivation during the post-XY rest period did not relate to
XY performance or to BC or AC performance after controlling
for general associative memory (SI Methods and Results, Reac-
tivation: Pattern Classification Analysis).
Next, we repeated the same analysis using an expanded region

of interest (ROI) encompassing the entire posterior fusiform
gyrus to further validate our findings. We found significant
relationships between reactivation in posterior fusiform and
BC performance (r32 = 0.38, P = 0.028) as well as AC in-
ference (r32 = 0.37, P = 0.032) when controlling for general
associative memory. Moreover, we observed significant in-
dividual correlations of BC performance and AC inference
with reactivation that were not observed in the smaller FFA
ROI (SI Methods and Results, Reactivation: Pattern Classifi-
cation Analysis; Fig. S3). Importantly, reactivation during the
post-AB scan was not related to XY performance for either
ROI (SI Methods and Results, Reactivation: Pattern Classifi-
cation Analysis; Fig. S3).
We also performed a control analysis to determine whether our

findings could be attributed to individual differences in baseline
levels of face reactivation. Because the post-XY encoding rest scan
was the most removed from face-related encoding, we reasoned
that this scan should be the least likely to contain face-related
neural signatures that would support memory. Thus, we subtracted
each participant’s post-XY encoding reactivation index from their
post-AB reactivation index (4). The resulting difference scores
reflecting the degree to which post-AB reactivation deviated from
baseline (as indexed by the post-XY scan) were then related to
performance as described above. For both FFA and posterior fu-
siform gyrus, we observed significant relationships between post-
AB reactivation with BC and AC performance controlling for
general associative memory using partial correlation. Moreover, in
the posterior fusiform gyrus ROI, individual relationships between
reactivation and performance were significant for BC and AC,
but not XY (SI Methods and Results, Reactivation: Pattern
Classification Analysis).

FFA Functional Connectivity During Rest. Next, we sought to de-
termine how FFA connectivity with medial temporal lobe (MTL)
regions predicted subsequent learning of object–object pairs. We
used two approaches: first, a timeseries correlation approach
within anatomically and functionally defined ROIs; and second,
a voxelwise regression approach using FFA as a seed region.
Both analyses were performed with consideration of the entire
rest scan, as prior reports have shown the importance of
sufficiently long timeseries for extracting stable measures of
functional connectivity (27).
Timeseries correlation approach. Our ROIs included functionally
defined FFA and anatomically defined HPC, perirhinal, ento-
rhinal, and parahippocampal cortices (all bilateral). We extracted
the first eigenvariate across all voxels in each ROI from the high-
pass filtered post-AB rest data. We then correlated the FFA
timeseries with the timeseries from each of the four MTL ROIs
(Fig. 3A, Upper and SI Methods and Results, Timeseries correlation
analysis). As in the rest-phase reactivation analysis, functional
coupling during post-AB rest was significantly related to BC
performance after controlling for XY performance (r32 = 0.37,
P = 0.033; Fig. 3A, Lower Left). A similar relationship was ob-
served with AC performance (r32 = 0.34, P = 0.049; Fig. 3A,
Lower Right). That is, participants showing enhanced FFA–HPC
functional coupling following AB encoding also showed an ad-
vantage specific to learning of the overlapping BC associations
and inferring the AC relationships. Connectivity between FFA
and all other MTL regions showed no significant relationship to
BC or AC performance after controlling for XY (all jr32j < 0.18,
P > 0.312; see also SI Methods and Results, Timeseries correlation
analysis for individual correlations with performance). Moreover,
neither the degree of connectivity itself nor its relationship to
performance was modulated by lag duration or encoding order
(SI Methods and Results, Delay and Encoding Order Analyses).
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Fig. 2. Reactivation following initial learning predicts subsequent encod-
ing of related content. (Upper) Depiction of rest-phase pattern classifica-
tion analysis. A pattern classifier was trained to discriminate FFA (purple)
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each time point of the rest data (grayscale matrices). (Lower) Relationship
between FFA reactivation and BC (Left) and AC (Right) performance,
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Importantly, the relationship between connectivity and perfor-
mance was also specific to the post-AB rest; there was no
correlation between FFA–HPC connectivity during the post-
XY rest period and XY performance or with BC or AC
performance controlling for XY performance (SI Methods
and Results, Timeseries correlation analysis). When various
nuisance sources (signal from white matter and ventricular
ROIs and motion-related regressors) were regressed out from
the post-AB rest data, the pattern of results was similar but
slightly weaker (SI Methods and Results, Timeseries correlation
analysis).
As with the reactivation results, we performed a control analysis

to account for individual differences in baseline connectivity by
subtracting the degree of post-XY FFA–HPC connectivity from
each participant’s post-AB connectivity measure of interest. We
found that our results held, with significant correlations between
connectivity and BC learning (as measured by both individual and
partial correlations), as well as AC inference. There was no
relationship between FFA–HPC connectivity during post-AB
rest and XY performance (SI Methods and Results, Timeseries
correlation analysis).

Seed-based approach. We also used a more sensitive seed-based
regression approach to identify specific MTL voxels for which
connectivity with FFA tracked subsequent BC performance. We
regressed each participant’s MTL data on their FFA timeseries
from the post-AB encoding rest scan, resulting in a statistics image
representing the degree of correspondence between each MTL
voxel and FFA activation over time. These results were combined
across participants in a group level general linear model (SI
Methods and Results, Seed-based analysis). We found two regions
for which FFA connectivity tracked more with BC than XY per-
formance: one in left [Montreal Neurological Institute (MNI)
template coordinates (in millimeters) x, y, z = −16, −30, −19] and
one in right (14, −33, −11) HPC, extending into parahippocampal
cortex (PHC) (Fig. 3B and Fig. S4). An overlapping cluster (−18,
−29, −13) in the left hemisphere was found to predict BC per-
formance (Fig. S5).

Multiple Regression. To investigate the degree to which reac-
tivation and connectivity independently explained variance in
subsequent learning, we next performed two multiple linear re-
gression analyses with indices of reactivation, connectivity, and
XY performance as independent variables and BC and AC
performance, respectively, as the dependent variables. The BC
model fit was significant (F3,31 = 38.90, P < 0.0001), accounting for
77.0% of the variance in BC performance (adjusted R2). More-
over, all three independent variables showed a significant positive
relationship to BC performance (reactivation: β = 0.33, P =
0.0004; connectivity: β = 0.30, P = 0.001; XY performance: β =
0.87, P < 0.0001; all statistics reflect standardized β), demon-
strating the unique contributions of rest-phase reactivation and
FFA–HPC connectivity to subsequent learning of related experi-
ences. Similar results were found in the regression model
predicting AC performance (F3,31 = 36.67, P < 0.0001; adjusted
R2 = 0.759; reactivation: β = 0.30, P = 0.002; connectivity: β = 0.27,
P = 0.004; XY performance: β = 0.87, P < 0.0001).

Univariate Encoding Activation. We next investigated neural en-
gagement during encoding of new object–object associations. We
were specifically interested in regions demonstrating a sub-
sequent memory effect for BC (i.e., more engagement during
study of BC pairs that were subsequently remembered vs. for-
gotten) but not XY pairs. As the above results showed that
certain rest-phase processes can facilitate BC encoding, we hy-
pothesized that (i) face-sensitive regions of visual cortex would
be engaged during BC trials, indicative of reinstatement of
previously learned Aface stimuli and that (ii) such engagement
would support encoding of the new BC object–object pairs. A
whole-brain analysis confirmed our predictions, revealing a sig-
nificant subsequent recall by condition interaction (correct >
incorrect × BC > XY) in left fusiform gyrus (−20, −75, −15;
Fig. 4A and Fig. S6).

Relationship Between Univariate Encoding Activation and Neural
Measures at Rest. We then considered how individual differ-
ences in rest-phase reactivation and FFA–HPC connectivity re-
lated to neural engagement during subsequent learning. We
created two general linear models at the group level that in-
cluded each participant’s FFA reactivation and FFA–HPC con-
nectivity indices, respectively, as covariates. We hypothesized
that greater reactivation and connectivity during rest would
be associated with more reactivation of Aface stimuli during
encoding. No region showed a significant relationship between
the interaction term and FFA reactivation. We did, however,
find activation in medial parietal and occipital cortex (centered
on −5, −39, 22), including fusiform gyrus, for which the in-
teraction term tracked positively with the degree of FFA–HPC
connectivity following AB encoding (Fig. 4B).

Discussion
We used a combination of methods—multivariate pattern clas-
sification, functional connectivity approaches, and task-based
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Fig. 3. FFA–HPC connectivity following initial learning predicts subsequent
encoding of related content. (A, Upper) depiction of timeseries correlation
analysis. For each participant, FFA (purple) and HPC (red) timecourses from
the post-AB rest scan were correlated to quantify the degree to which FFA
and HPC exhibit similar activations over time (Upper Right). (Lower) Re-
lationship between FFA–HPC connectivity and BC (Left) and AC (Right) per-
formance, controlling for XY performance. Data are displayed as in Fig. 2.
(B) HPC showed connectivity with FFA during rest that was significantly more
predictive of BC than XY performance (displayed on the 1-mm MNI template
brain). Color bar indicates uncorrected voxelwise P value. Coordinates are in
millimeters. See also Figs. S4 and S5.
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univariate analyses—to provide empirical evidence that offline
neural processes may mediate the relationship between prior
knowledge and new encoding. Our findings converge to suggest
that rest-phase reactivation may benefit future learning by pro-
moting subsequent integration during encoding. Interestingly,
this benefit was observed even despite a long delay of approxi-
mately 1 h between overlapping event encoding and test.
Moreover, we suggest that the rest-phase reactivation observed
in the present study occurred spontaneously. As participants
were unaware of the overlap between the pretraining phase (AB
learning) and the scanned portion of the experiment (BC and
XY learning) at the time of post-AB rest (SI Methods and
Results, Memory Task), it is unlikely that our results reflect in-
tentional rehearsal of AB associations during that period.
Whereas the benefits conferred by offline processes on prior

memories have been shown previously, the present work is, to our
knowledge, the first to demonstrate how such benefits might also
be prospectively advantageous. That is, rest-phase reactivation and
connectivity serve to make our memories better suited for new
learning in future situations, providing a foundational knowledge
base upon which new experiences can be encoded. Importantly,
because our classifier was trained on data from an independent
localizer task consisting of a different stimulus set and task, our
results suggest that reinstatement of episodic content (i.e., face
information from learned AB face–object pairs)—rather than re-
instatement of a learning-related state or context—supports the
formation of memories for related information.
However, we note that like the vast majority of studies on this

topic, our data do not provide evidence for processing of specific
AB memories during the post-AB rest period. Thus, one possible
alternative explanation of our findings is that participants reac-
tivated task-irrelevant face information, and that doing so sup-
ported their later ability to encode BC content, as AB memories
became less likely to interfere with new learning. However, we
feel this possibility is unlikely given our results. For example,
we found that greater reactivation and connectivity were asso-
ciated with superior AC inference performance, which requires

retrieval of the Aface learned during pretraining. Moreover, both
BC memory and AC inference were better for the AB pair
memories acquired earlier in the pretraining phase, suggesting
that strong AB knowledge promotes BC encoding. Thus, we
suggest that the most likely interpretation of the data presented
here is that AB memories were spontaneously reinstated during
the post-AB rest period. Through this process, they became
stronger or more readily accessible (1–3) and therefore easier to
reactivate and integrate during BC study.
We would also note that associative facilitation was not ob-

served across the entire group of participants; rather, we ob-
served large individual differences in the degree to which
participants showed facilitation vs. interference. In fact, ap-
proximately half of our participants did not show evidence of
facilitation at all, but rather showed interference (Fig. S1A).
Thus, we would not conclude that proactive interference does
not occur, but rather that there exists a tradeoff between in-
terference and facilitation; and that this tradeoff may be medi-
ated by offline processes. In other words, participants with a
greater degree of post-AB reactivation and connectivity may
show associative facilitation through an integrative encoding
mechanism, whereas participants showing a lesser degree may
tend to exhibit interference.
More broadly, we suggest that one factor that may determine

whether prior knowledge facilitates or interferes with the acqui-
sition of new information is the strength of the initial memory,
with strong prior knowledge being predominantly facilitative. This
may occur not only during overt encoding or rehearsal, but also
spontaneously during periods of passive rest. Notably, prior work
suggests that low to moderate levels of memory reactivation may
weaken traces, whereas high reactivation serves to strengthen
memories (28). In the present study, lesser offline reactivation
may thus be associated with weaker AB memories. Such weak
traces may fail to be reactivated at all or may be weakly reactivated
during learning, perhaps being forgotten when integration fails
(29) or interfering with new encoding. In contrast, greater reac-
tivation during rest strengthens AB memories, which can then
later support BC learning through learning-phase retrieval and
integration. Future work may characterize differences in item-
level reactivation within participants to address how strengthening
of individual memories impacts the balance between facilitation
and interference.
One interesting aspect of our data is that the observed rela-

tionships between reactivation and both BC learning and AC in-
ference were specific to early in the post-AB rest scan. Importantly,
this finding cannot be explained by differences in the amount of
time between the encoding and rest scan across participants; delay
duration did not predict the degree of face reactivation. Thus,
interpreted in the context of the converging rest- and task-based
neural measures provided here, we believe this reactivation mea-
sure serves as a valid index of neural processes that mediate the
interactions between prior memories, new learning, and subsequent
inference. Whereas a mechanistic explanation for the temporal
dependence of this signature is unclear, we believe our measure of
reactivation provides additional insight into how processing of prior
memories during offline periods shape later learning experiences.
Our results converge across multiple measures to demonstrate

the important relationship between postencoding reactivation,
functional connectivity, and episodic memory, consistent with
a host of findings from rodent (2) and human (1, 3, 4) studies. In
addition, our data provide previously unidentified evidence that the
mnemonic advantage conferred by offline processes extends be-
yond the initial memories themselves to influence the subsequent
encoding of related content. Our data suggest a specific mechanism
through which offline reactivation and HPC–neocortical connec-
tivity leads to the strengthening of memory traces, thereby sup-
porting later learning of related content via integrative encoding
(9). Consistent with this interpretation, we found greater engage-
ment of face-sensitive regions (i.e., fusiform gyrus) during encoding
of object–object pairs that related to prior face knowledge as
a function of FFA–HPC connectivity at rest. This extends prior
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Fig. 4. Regions showing a significant subsequent recall by condition in-
teraction during encoding. (A) Left fusiform gyrus was the only region to
show greater subsequent recall effects for BC relative to XY pairs. (B) The
interaction term was significantly modulated by the degree of FFA–HPC
connectivity during the post-AB rest scan in portions of medial parietal and
occipital cortex, including the fusiform gyrus and posterior cingulate cortex.
Color bar indicates z score. Coordinates are in millimeters. See also Fig. S6.
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work demonstrating the benefits of learning-phase reactivation
for the reactivated memories themselves (18) and for linking
experiences across time (20). We suggest that memory strength-
ening during rest facilitates retrieval of related content during
subsequent learning experiences, thereby supporting new encoding
by enabling linking of related memories (17).

Experimental Procedures
Subjects and Procedures. Forty-eight volunteers participated in this study;
a total of 13 participants were excluded due to hardware malfunction (n = 5),
handedness concerns (n = 1), and low memory performance for the directly
learned associations (n = 7). Data from the remaining 35 participants were
analyzed. Participants first learned a set of face–object associations (AB
pairs) outside of the scanner. These pairs were encoded across four alter-
nating study and test blocks, ensuring participants had extensive experience
with these pairs. Tests were cued recall format and included feedback.
Participants were then transferred to the scanner and fMRI data were ac-
quired during an initial (post-AB encoding) rest period. They were told to
remain awake and keep their eyes open but to think about whatever they
like. We then presented participants with overlapping (BC) and non-
overlapping (XY) object–object pairs in separate scans. Each pair type was
followed by a postencoding rest scan, and the order of BC vs. XY was
counterbalanced across participants. After the final rest scan, participants
were removed from the scanner and completed a cued recall test for the
associations studied in the scanner (BC and XY) and a surprise test of in-
ferential (AC) relationships. For the AC test, participants were shown the
Cobject and were asked to produce the indirectly associated Aface. No feed-
back was provided for either test. Following the memory task, participants
were transferred back into the scanner to complete a one-back functional
localizer task comprising faces, objects, scrambled objects, and fixation
baseline. These data were used to obtain neural patterns associated with
viewing different types of visual stimuli, which were then used to define
face-sensitive ROIs and for training the neural pattern classifier (see below).
Full procedures and MRI data acquisition and processing details are
described in SI Methods and Results.

Pattern Classification Analysis. Multivoxel pattern analysis (MVPA) (30, 31)
was performed using sparse multinomial logistic regression (SMLR) imple-
mented in PyMVPA (32). For each participant, a classifier was trained to
differentiate viewing of face, object, scrambled object, and passive fixation
stimuli on the basis of activation patterns in face-sensitive regions (i.e., FFA
and posterior fusiform gyrus). The trained classifier was then applied to each
volume of the post-AB encoding rest scan. Face reactivation indices were
defined as the mean classifier face evidence over time and related to per-
formance across participants using partial correlation and Pearson’s corre-
lation. For more details, see SI Methods and Results, Reactivation: Pattern
Classification Analysis.

Functional Connectivity Analysis. MTL functional connectivity with FFA was
assessed using both timeseries correlation and voxelwise regression. The first
eigenvariate of the post-AB rest signal over time was extracted from bi-
lateral HPC, perirhinal, entorhinal, and parahippocampal cortices; and bi-
lateral FFA.MTL timeseries were then correlatedwith the FFA timeseries; the
resulting correlation statistics were Fisher transformed and related to per-
formance using partial correlation and correlation. For the voxelwise re-
gression approach, we constructed general linear models that included the
timeseries from the FFA seed as a regressor for each participant. The
resulting statistics images were warped to theMNI template using ANTS (33)
and combined across the group. We were interested specifically in those
voxels whose connectivity with FFA tracked with BC performance more
than XY performance; thus, BC and XY performance were added to the
group level model as covariates. For full details, see SI Methods and Results,
Functional Connectivity.
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SI Methods and Results
Participants. Forty-eight right-handed volunteers (27 females; ages
20–33, mean ± SEM = 24.6 ± 0.5 y) participated in the experi-
ment. Consent was obtained in accordance with an experimental
protocol approved by the Institutional Review Board at the Uni-
versity of Texas at Austin. Participants received monetary com-
pensation for their involvement in the study. Data from a total of
13 participants were excluded for the following reasons: hardware
malfunction (n = 5), handedness concerns (n = 1), and low
memory performance (n = 7). Low memory performance was
defined as either (i) failure to subsequently recall more than 10%
of new overlapping (BC) and nonoverlapping (XY) object–object
associations studied in the scanner (n = 6) or (ii) failure to reach
near-perfect performance on initial face–object (AB) associations
(<80% cued recall accuracy; n = 1). Data from the remaining 35
participants were included in all analyses (21 females; ages 20–30,
24.1 ± 0.5 y).

Materials. Stimuli consisted of 60 grayscale images of famous faces
(30 male and 30 female) and 240 grayscale images of common
objects organized into 60 triads (denoted ABC) and 60 pairs
(denoted XY) (Fig. 1A). All images were presented with verbal
labels. ABC triads consisted of one face and two objects and
were presented as overlapping AB and BC pairs, with the B item
shared between pairs. That is, AB pairs always consisted of one
famous face (A) paired with one object (B); the same object (B)
was then paired with a different object (C) to form a BC pair.
Nonoverlapping XY pairs consisted of two objects. All items
were unique to their triad or pair, such that a single face or
object image was a member of only one ABC triad or one XY
pair. Four randomization groups were created to control for the
organization of images into triads and pairs and viewing order.
Objects were randomly assigned to item type (B, C, X, or Y),
which determined both whether it belonged to a triad or pair and
during which phase(s) it served as a recall cue (see below). An
equal number of BC pairs associated with male and female faces
(A) were presented within each of two BC encoding scans; no
other constraints in item assignment or trial order were imposed.
As described below, the order of BC encoding vs. XY encoding
was counterbalanced across participants.

Memory Task. Participants completed a modified version of the as-
sociative inference task (Fig. 1A) (1–3). Before scanning, participants
were trained to near-perfect performance on all 60 AB (face–object)
pairs (Fig. 1A, blue). The goal of the pretraining phase was to create
established memories for the AB pairs, such that overlapping BC
information could then be encoded in relation to strong existing
memories. The AB pretraining phase consisted of four study–test
alternations. During the study phase, participants viewed each AB
pair once [Fig. 1A, blue; 3.5-s stimulus, 0.5-s intertrial interval (ITI)].
“A” items (faces) were always shown on the right; “B” items (ob-
jects) were always on the left. Participants were encouraged to
construct a visual or verbal story linking the items to aid memory but
were not required to make any explicit response. Each study phase in
the pretraining portion of the experiment lasted 4 min.
Following each study phase, participants completed a self-

paced cued recall test (Fig. 1A, blue). The B item (object) was
presented on the left side of the screen next to an empty box.
Participants were asked to say aloud the name of the face that
was paired with it. After either a verbal response had been
produced or the trial was “passed,” participants viewed a feed-
back display in which the correct image appeared in place of the

empty box. Including the feedback displays, each pair was viewed
a total of eight times during the pretraining phase.
After completing the initial AB pair pretraining, participants

were transferred to the scanner after a delay (SI Methods and
Results, Delay and Encoding Order Analyses). Importantly, at no
time were participants made aware by the experimenter of the
relationship between the pretraining phase and subsequent study
and test tasks. That is, participants were not told that they would
be learning overlapping associations in the scanner or that their
memory for AB associations would later be probed via the in-
ference (AC) test. Thus, whereas participants became aware of
the overlap between the AB and BC pairs after the fact (all
35 reported awareness of this structure in a postexperiment
questionnaire), there was no such expectation established before
scanning. Once in the scanner, fMRI data were collected during
6 min of passive rest (Fig. 1A, yellow). During this time, a white
fixation cross was displayed on a black screen. Participants were
instructed to think about whatever they liked, while remaining
awake and alert with their eyes open.
Following the initial post-AB rest scan, participants were scanned

during encoding of overlapping BC (Fig. 1A, orange) and non-
overlapping XY pairs (Fig. 1A, green). Pairs were segregated by
type into separate scans. There were a total of four slow event-
related scans (two BC scans and two XY scans; 3.5 s stimulus,
8.5-s ITI). Participants were encouraged to construct a visual or
verbal story while they encoded the new associations; no explicit
responses were required. Each pair was presented just once,
requiring rapid acquisition of associative information. C and Y
objects were on the left; B and X objects were on the right. BC
study scans always occurred in immediate succession, as did XY
study scans. Encoding order of BC and XY scans was counter-
balanced across participants. That is, for half of the participants,
all BC pairs (scans 1 and 2) were learned before XY pairs (scans
3 and 4); for the other half, the order was reversed. Each study
scan was 6 min long. Postencoding rest scans were acquired
immediately following BC (e.g., after study scan 2) and XY (e.g.,
after study scan 4) learning (Fig. 1A, yellow). These scans were
identical to the post-AB encoding rest scan described previously.
After the final rest scan, participants were taken out of the

scanner to complete a cued recall test on BC and XY pairs (Fig. 1A,
orange/green). C and Y items, presented on the left, served as
probes. BC and XY test trials were randomly intermixed. Fol-
lowing completion of the BC/XY test, structure of the inferential
(AC) associations was explained to participants. That is, partic-
ipants were told that A and C items both paired with the same
B item were indirectly related. Only two participants reported that
they anticipated this inference test, even though all participants
became aware of the overlap between the AB and BC associations
during the BC study phase. They then completed a cued recall test
on these surprise inference associations. The same items (C) served
as probes, but this time participants were asked to name the in-
directly related item (A, always a face). No feedback was provided
during postscanning BC/XY or AC inference tests to prevent ad-
ditional learning of the directly learned (BC/XY) associations.
Participants had the opportunity to practice the memory task

before beginning the experiment. The practice included only
nonoverlapping face–object associations using different stimuli
from the main experiment.

Analysis of Behavioral Data. Cued recall responses were hand
scored. Responses were scored as correct if the participant
produced the correct label or, for famous faces, if they provided
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a unique and accurate description of the person (e.g., by naming
a film in which the actor was featured). We used this liberal
criterion for recall because we found that participants would often
recall a stimulus in great detail despite an inability to remember
the specific verbal label. This type of recall performance was true
for virtually only the Aface stimuli, and was particularly common
early in the initial AB pair pretraining. For example, instead of
recalling Daniel Radcliffe, the participant may state “the guy
who plays Harry Potter.” This criterion has been used in prior
studies using a similar stimulus set and paradigm (4). A pro-
portion correct was calculated for each participant, pair type (for
AB, BC, XY, and AC), and repetition (for AB only).
The degree of facilitation versus interference exhibited was

highly variable across participants (mean of XY − BC perfor-
mance = 0.9%; SEM = 2.2%; range = −26.7–26.7%; Fig. S1A).
Approximately half of the participants showed interference (n =
16 had numerically better XY than BC memory), whereas half
showed facilitation (n = 15 had numerically better BC than XY
memory). The remaining four participants had equal memory for
BC and XY pairs.
Performance on BC pairs and AC inferences was highly corre-

lated, both across participants (r33 = 0.98) and on a triad-by-triad
basis within participant. Importantly, C items served as cues for
both BC and AC test trials. Thus, using the example from Fig. 1A,
the participant was first presented with CANDLE and asked to
produce HARP as a test of BC memory. When the participant was
again presented with CANDLE during the AC inference test, they
should recall BRAD PITT. Because of this structure, AC inference
can serve as an approximation of AB performance at the end of the
memory task. We computed AC performance for only those triads
for which the corresponding BC pair was recalled. Participants
correctly recalled the vast majority of AC inferences when BC was
correct (mean accuracy = 88.6%; median = 91.7%; SEM = 2.1%;
range = 57.1–100%). This corresponded to on average just over two
incorrect AC inferences when the overlapping BC was recalled
(mean number of incorrect AC trials = 2.1; median = 2; SEM = 0.3;
range = 0–8). These high levels of performance suggest that AB
pairs were not forgotten over the course of the experiment.
To investigate the relationship between memory for the initial

AB pairs and performance on overlapping BC pairs and AC
inferences, we sorted triads according to when the AB pair was
initially learned.We hypothesized that memory for thoseAB pairs
learned early in the pretraining phase (e.g., that were correctly
recalled on the first and all subsequent test blocks) may have
stronger memory traces than for those learned late in pretraining
(e.g., correctly recalled only on the final test block). An integrative
encoding perspective predicts that stronger AB memories would
support BC learning and AC inference. Thus, we would expect
higher BC andAC performance when the corresponding AB pairs
were learned early, relative to when they were learned late. In-
terestingly, interference theory might make the opposite pre-
diction, with better BC and AC performance for later-learned AB
pairs, as these weaker memories are less likely to interfere.
Accordingly, we sorted BC and AC test trials according to the

AB test block on which the corresponding AB pair was correctly
recalled for the first time. Due to the small number of participants
(n = 16) who had any pairs that were first recalled on the fourth
and final test block, we collapsed across pairs whose first recall
occurred during blocks 3 and 4 for this analysis (referred to
hereafter as block 1 AB pairs, block 2 AB pairs, and block 3/4
AB pairs). To be considered in this analysis, the AB pairs also
had to be correctly recalled on all subsequent test blocks. That is,
a block 1 AB pair was correctly recalled on blocks 1–4; a block
2 AB pair was correctly recalled on blocks 2–4; and a block 3/4
AB pair was either correctly recalled either on blocks 3 and 4 or
only on block 4. We then assessed BC and AC performance as
a function of AB acquisition time using a repeated measures
ANOVA. All but three participants who had no block 3/4 AB

pairs were included in this analysis (n = 32). We found a signifi-
cant linear effect of AB memory strength on BC performance
(F1,31 = 5.19, P = 0.030; Fig. S1B, Left chart). This suggests that,
consistent with an integrative encoding perspective, stronger initial
memories are associated with superior encoding of overlapping
content. Performing the same analysis for AC performance re-
vealed a similar relationship (F1,31 = 3.99, P = 0.055; Fig. S1B,
Right chart), further suggesting that strong prior knowledge facil-
itates memory integration for subsequent flexible use.

Visual Localizer Task. After the memory task, participants com-
pleted a blocked design functional localizer during fMRI scanning
to obtain neural patterns associated with viewing different types
of visual stimuli. Participants viewed blocks of faces, objects, and
scrambled objects while performing a one-back task. For each
image, they pressed one of two buttons on a keypad to indicate
whether the picture was new or a repeat of the immediately
preceding picture. Responses were collected solely to ensure at-
tention to the task and were not considered as part of the analysis.
The images used in the localizer task were different from those
used in the memory task. There were four blocks of each stimulus
type per run, plus additional interleaved blocks of passive fixation.
Blocks were 18 s long, yielding a total run length of 5 min. Three
localizer scans were collected. Participants had the opportunity to
practice the visual localizer task before beginning the experiment.

MR Data Acquisition. Imaging data were acquired on a 3.0T GE
Signa MRI system (GE Medical Systems). All functional data
were collected in 33, 3-mm thick oblique axial slices using an echo
planar imaging (EPI) sequence [repetition time (TR) = 2,000 ms,
echo time (TE) = 30.5 ms, flip angle = 73; 64 × 64 matrix, 3.75 ×
3.75 mm in-plane resolution, bottom-up interleaved acquisition,
0.6 mm gap]. T2-weighted structural images were acquired in the
same prescription as the functional images for the memory
(TR = 3,200 ms, TE = 68 ms, 512 × 512 matrix, 0.46 × 0.46 mm
in-plane resolution) and visual localizer (TR = 3,200 ms, TE =
68 ms, 256 × 256 matrix, 0.94 × 0.94 mm in-plane resolution)
tasks. A T1-weighted 3D spoiled gradient recall (SPGR) structural
volume (256 × 256 × 172 matrix, 1 × 1 × 1.3 mm voxels) was also
collected to facilitate image coregistration and for automated par-
cellation using Freesurfer (http://surfer.nmr.mgh.harvard.edu/) (5).

fMRI Data Preprocessing. Functional data were preprocessed using
FSL version 5.0.2 (FMRIB’s Software Library, www.fmrib.ox.ac.
uk/fsl). The first four volumes of all functional scans were dis-
carded to allow for T1 stabilization. Motion correction was
performed within each functional scan using MCFLIRT, by
aligning all images in the run to the middle volume in the
timeseries. Coregistration of functional data across runs was
performed by calculating and applying the affine transformation
from each run to a reference run using FLIRT, part of FSL. The
3D SPGR structural volume was registered to the functional
reference run using the EPI registration utility (part of FLIRT)
and then resampled to functional space. Brain extraction was
performed on all structural and functional images using BET.
With the exception of the group-level general linear models
(GLMs), all analyses were done in the native functional space of
each participant.

Regions of Interest. Anatomical region of interest definition. The hip-
pocampal (HPC) and medial temporal lobe (MTL) cortices
(entorhinal cortex, ERC; perirhinal cortex, PRC; and para-
hippocampal cortex, PHC) were delineated by hand on the 1-mm
Montreal Neurological Institute (MNI) template brain and reverse
normalized to each individual’s functional space using Ad-
vanced Normalization Tools (ANTS) (6). Specifically, a non-
linear transformation was calculated from the MNI template
brain to each participant’s 3D SPGR volume. This warp was then
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concatenated with the SPGR to functional space trans-
formation calculated using FLIRT. After applying the trans-
formation using ANTS, the anatomical MTL regions of interest
(ROIs) were aligned to each participant’s functional data.
Functional region of interest definition. Functional data from the
localizer task were used to define face-sensitive voxels within the
fusiform gyrus (i.e., fusiform face area, FFA). Analysis of fMRI
data from the localizer task was carried out using FEAT (fMRI
Expert Analysis Tool) version 6.00, part of FSL. The following
prestatistics processing was applied: grand-mean intensity nor-
malization of the entire 4D dataset by a single multiplicative
factor; high-pass temporal filtering (Gaussian-weighted least-
squares straight line fitting, with sigma = 64 s); and spatial
smoothing [5 mm full width at half maximum (FWHM)]. FILM
prewhitening was used. Stimulus presentation blocks were mod-
eled as events of 18-s duration, with one regressor for each
stimulus type (face, object, scrambled object, passive fixation).
Stimulus regressors were convolved with the canonical (double-
gamma) hemodynamic response function (HRF). Motion pa-
rameters calculated during the motion correction step and their
temporal derivatives were added as additional confound re-
gressors. Two measures of framewise data quality were also cal-
culated to identify volumes that may be adversely impacted by
motion artifacts: framewise displacement (FD) and the temporal
derivative of the root-mean-square variance across voxels
(DVARS) (7). FD measures the overall change in head position
from one time point to the next and is calculated by summing the
absolute values of the derivatives of the six motion parameters
calculated during the realignment step. DVARS measures the
overall change in image intensity from one time point to the next.
This index is calculated as the root mean square of the derivatives
of the timecourses across all voxels in the brain. Both FD and
DVARS were added to the model as regressors of no interest (8).
Additional regressors were created for each time point in which
motion exceeded a threshold of both 0.5 mm for FD and 0.5%
change in blood oxygen level-dependent (BOLD) signal for
DVARS (plus one time point before and two time points after)
(7). Temporal filtering was then applied to the model.
After modeling functional data within each run, the resulting

statistical images were combined across localizer runs for each
participant using fixed effects. As data were already coregistered
across runs, no additional registration or spatial normalization
was necessary. Face-selective regions were defined for each
participant as those voxels responding more to faces than objects
and scrambled objects. The procedure for FFA definition was as
follows: we created 14-mm spheres centered at each participant’s
peak voxel (i.e., the maximum z statistic from the face > objects +
scrambled objects contrast image) located within the posterior
half of their Freesurfer-defined fusiform gyrus. This sphere was
then masked with fusiform gyrus to restrict FFA to gray matter
voxels. This method was used to ensure FFAs of approximately
the same size across participants. This procedure was carried out
separately for the left and right hemispheres; lateralized ROIs
were then summed to create a bilateral FFA (ROI size range:
205–336 voxels, mean ± SEM = 288.7 ± 5.7 voxels). As ROI
definition took place in the native functional space of each
participant, no realignment or resampling was necessary.

Reactivation: Pattern Classification Analysis. Multivoxel pattern
analysis (MVPA) was carried out using sparse multinomial lo-
gistic regression (SMLR) with a penalty term of 10 implemented
in PyMVPA (9). The bilateral FFA mask described above was
used for the main pattern classification analysis. In a follow-up
analysis, we also interrogated reactivation within the posterior
half of the fusiform gyrus defined on each participant (as above).
By looking at this larger activation pattern, we were able to in-
crease our statistical power. For each participant, a classifier
was trained to differentiate patterns of activation associated with

face, object, scrambled object, and passive fixation blocks using
data from the visual localizer task. Following training, the clas-
sifier trained on localizer data from FFA was able to predict the
visual content associated with new, unlabeled activation patterns
from the same participant’s brain with high accuracy (range:
70.4–96.1%, mean ± SEM: 84.4% ± 1.1% correct). Similar
results were found for the posterior fusiform gyrus ROI
(74.8–95.6%, 87.4 ± 0.7% correct).
The goal of the MVPA approach in the present study was to

detect reactivation of previously encoded content (i.e., face in-
formation) during offline rest periods. To test the hypothesis that
face information would be reactivated following the AB pair
pretraining phase, we applied the trained classifier to each volume
of the post-AB rest scan, acquired while the participant was
viewing a fixation cross. The classifier estimates were extracted for
each volume, yielding reactivation timecourses specific to each
stimulus category for each participant.
A sliding window analysis was used to determine how the re-

lationship between reactivation and BC memory performance
changed across the duration of the post-AB rest scan. For each
60-TRwindow in the rest scan, a reactivation index was calculated
for each participant as the average face evidence across the
window. Whereas we focus primarily on face evidence in the main
text (Fig. S2, Upper Left), this measure was also calculated for the
remaining stimulus categories, for which we did not see any re-
lationship to behavior (Fig. S2, Upper Right). This index was then
related to BC performance across participants using partial
correlation (controlling for XY performance). This resulted in
a partial correlation value (r) that was Fisher transformed (z) and
assigned to the middle TR of the window. We defined 95%
confidence intervals on the partial correlation statistic for each
window using a bootstrapping procedure as follows: for each of
1,000 iterations, a group of 35 participants was drawn randomly
with replacement from our sample. We then repeated the pattern
classification analysis with this simulated group of participants,
yielding a partial correlation statistic (Fisher’s z) for each analysis.
After repeating this procedure 1,000 times, partial correlation
statistics were sorted and confidence intervals were drawn at the
25th (the upper 2.5%) and 975th (lower 97.5%) z values. The
window was then shifted by one TR and the entire procedure was
repeated. This analysis was also performed separately for in-
dividual relationships with BC and XY performance using Pear-
son’s correlation (Fig. S2, Lower row). As the relationship between
reactivation and performance was unique to the beginning of the
scan, the results reported in the main text (Results, Face Re-
activation During Rest) and below focus on how reactivation relates
to behavior during the first 60-TR window (Fig. 2, Lower).
Individual relationships with BC, AC, and XY performance were

assessed in the first 60-TR window using Pearson’s correlation. We
also compared the separate relationships of reactivation with BC
and AC with that of XY using the Hotelling–Williams procedure
(10, 11), a statistical test that accounts for shared variance among
related measures. The partial correlation between reactivation and
memory facilitation during the post-AB rest was driven by a nu-
merically positive relationship between reactivation and BC
performance (r33 = 0.20, P = 0.239); and a numerically negative
relationship between reactivation and XY performance (r33 = −0.07,
P = 0.681; Figs. S2, Lower row and S3A). Whereas neither re-
lationship was statistically significant on its own, they were sig-
nificantly different from one another (Hotelling–Williams test;
t32 = 2.74, P = 0.010). Tracking BC performance, the relation-
ship between reactivation and AC performance was also positive,
although it too did not reach statistical significance (r33 = 0.18,
P = 0.310; Fig. S3A). The relationship between reactivation and
AC performance also differed significantly from XY (Hotelling–
Williams test; t32 = 2.50, P = 0.018). Importantly, we present
these data with the caveat that the individual relationships are
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difficult to interpret, as they include effects attributable to gen-
eral associative memory ability.
Using the entire posterior fusiform gyrus ROI, the partial

correlations between reactivation and BC performance (r32 =
0.38, P = 0.028) and reactivation and AC performance (r32 =
0.37, P = 0.032) remained statistically significant. Moreover, the
individual relationships (Fig. S3B) between reactivation and BC
performance (r33 = 0.37, P = 0.028) and reactivation and AC
performance (r33 = 0.36, P = 0.032) were significant in this larger
ROI, whereas the relationship with XY performance remained
nonsignificant (r33 = 0.19, P = 0.282). The difference in the
reactivation–performance relationships for both BC and XY
(Hotelling–Williams test; t32 = 1.81, P = 0.079) and AC and XY
(Hotelling–Williams test; t32 = 1.78, P = 0.085) trended toward
significance in this expanded region.
We also performed several control analyses that leveraged the

post-XY encoding rest period to investigate the specificity of
this reactivation–performance relationship to the post-AB rest.
These analyses were performed to assess the hypothesis that the
observed measures relate specifically to memory integration and
are modulated by experience (i.e., they are not stable within an
individual over time). For these analyses, we treated the post-XY
rest as a baseline period. We believe this serves as an appropriate
control in the present study for two reasons. First, of the three
rest scans acquired in the present study (post-AB, post-BC, and
post-XY encoding), the post-XY encoding rest is the most re-
moved from the demands of overlapping encoding (e.g., memory
integration or interference resolution). For this reason, it is likely
that this period would reflect the most recent experience: en-
coding of object–object (XY) associations that did not overlap
with the critical Aface information. Second, whereas post-XY
encoding rest may not reflect “true” baseline activity in the
traditional sense, it is a stringent and appropriate control for
studying the phenomenon of interest. That is, as we expect
post-XY encoding rest to reflect persistence of signatures as-
sociated with simple associative encoding, any additional ef-
fects observed during post-AB encoding rest are all of the more
likely to relate specifically to overlapping encoding. Impor-
tantly, as our neural measures are defined specifically to index
processing of face-related memories, we would not expect the
degree of FFA reactivation during the post-XY period to relate
to XY performance.
Accordingly, we interrogated the relationship between FFA

reactivation during post-XY encoding rest and memory perfor-
mance. One alternative account of our findings is that the ob-
served neural measures simply reflect general associative memory
ability and are unrelated to memory integration in particular. To
assess this possibility, we related FFA reactivation during the
post-XY period to general associative memory performance (XY)
across participants. We found that face reactivation in FFA
following XY encoding was not related to general associative
memory (XY) performance (r33 = 0.11, P = 0.52), rendering an
account based purely on general associative memory signatures
improbable. A second alternative account is that stable individual
differences in reactivation are associated with superior memory
integration. If this were indeed the case, one would expect that
reactivation measures from an unrelated rest period (e.g., post-
XY encoding rest) should predict BC performance after con-
trolling for XY. This was not the case in our data; we observed
no relationship between post-XY reactivation and BC (r32 =
−0.06, P = 0.747) or AC (r32 = −0.09, P = 0.587) performance
after controlling for XY performance using partial correlation.
Thus, these control analyses are consistent with the notion that
enhanced reactivation during rest confer a specific behavioral
advantage on subsequent learning of related content.
Post-XY reactivation was also subtracted from post-AB reac-

tivation for each participant (12); these difference scores were then
related to performance as described previously. The goal of this

approach was to account for differences in baseline connectivity
across participants. This analysis replicated our prior findings for
both FFA and anatomically defined posterior fusiform gyrus
ROIs. Specifically, reactivation in FFA was related to BC
memory (r32 = 0.33, P = 0.054) and inference (r32 = 0.34, P =
0.050) after controlling for general associative memory perfor-
mance. Moreover, the correlations between reactivation and BC
(Hotelling–Williams test; t32 = 2.14, P = 0.040) and AC (Ho-
telling–Williams test; t32 = 2.18, P = 0.037) performance each
differed significantly from the relationship between reactivation
and XY performance. In posterior fusiform gyrus, reactivation
also maintained its significant relationships with BC memory (r32 =
0.39, P = 0.023) and inference (r32 = 0.42, P = 0.013) after con-
trolling for XY performance. In addition, the individual relation-
ships between reactivation and BC performance (r33 = 0.39, P =
0.022) and AC inference (r33 = 0.40, P = 0.017)—but not XY
performance (r33 = 0.20, P = 0.259)—were significant. The dif-
ference between BC and XY correlations with reactivation ap-
proached significance (Hotelling–Williams test; t32 = 1.87, P =
0.071); its relationship with AC was significantly different from
XY (Hotelling–Williams test; t32 = 2.13, P = 0.041).

Functional Connectivity. Functional connectivity was examined
using two approaches: first, a timeseries correlation within ana-
tomically and functionally defined ROIs and second, a voxelwise
regression approach using FFA as a seed region.
Timeseries correlation analysis. For each participant, functional data
from the post-AB rest scan were high-pass filtered with a cutoff of
0.009 Hz, which has been used in previous studies examining rest-
phase connectivity (12, 13). For each FFA and MTL ROI, the
first eigenvariate of the signal across all voxels in the mask was
extracted across the full 6 min (180 TRs) of the post-AB rest
period. For each participant, the FFA timeseries was then cor-
related with the timeseries from each MTL ROI. This procedure
resulted in four correlation values (r) per participant (FFA–

HPC, FFA–ERC, FFA–PRC, and FFA–PHC), representing the
degree of functional connectivity between FFA and each of the
MTL ROIs during the post-AB rest period. For each pair of
ROIs, connectivity was related to BC and AC performance
across participants using partial correlation (controlling for XY
performance). Individual relationships with BC, AC, and XY
performance were also assessed using Pearson’s correlation.
Relationships to BC and XY, and AC and XY, were compared
using the Hotelling–Williams test (10, 11). The individual rela-
tionships between FFA–HPC connectivity and BC (r33 = 0.12,
P = 0.500), AC (r = 0.09, P = 0.59), and XY (r33 = −0.13, P =
0.467) performance did not reach statistical significance. How-
ever, the connectivity–performance relationships for BC and XY
performance were significantly different from one another
(Hotelling–Williams test; t32 = 2.36, P = 0.024), as was the
difference between relationships with AC and XY perfor-
mance (Hotelling–Williams test; t32 = 2.18, P = 0.037).
We also repeated this analysis after regressing out potential

sources of noise from the resting state data. Specifically, we
extracted the first eigenvariate of the signal across the duration of
the rest scan in anatomically defined white matter and lateral
ventricle ROIs. The signal from these two ROIs and their tem-
poral derivatives were used to construct a GLMalong with motion
parameters, FD, DVARS, and their temporal derivatives, and
timepoints with excessive motion (as described above in SI
Methods and Results, Functional region of interest definition). The
high-pass filtered data from the previously described step were
then regressed on these noise sources, and the first eigenvariate
was extracted from the resulting data (i.e., the residual
timeseries). As in the above-described analysis, each partic-
ipant’s FFA timeseries was then correlated with their MTL
timeseries, resulting in four indices representing functional
connectivity between FFA and the four MTL regions. These
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measures were then related to performance using partial
correlation and Pearson’s correlation. The relationship be-
tween FFA–HPC connectivity and BC learning (r32 = 0.30, P =
0.088) and connectivity and AC inference (r32 = 0.30, P = 0.089)
after controlling for XY memory approached significance.
We also calculated connectivity measures for the post-XY

encoding rest period for the purposes of the control analyses.
Connectivity was related to XY performance using Pearson’s
correlation and to BC and AC performance controlling for XY
using partial correlation. We found no relationship between
FFA–HPC connectivity following XY encoding and XY memory
performance (r33 = −0.22, P = 0.20), suggesting that this signa-
ture does not simply reflect general associative memory ability.
There was also no relationship between connectivity and BC
(r32 = −0.11, P = 0.538) or AC (r32 = −0.11, P = 0.534) per-
formance after controlling for XY.
To control for possible individual differences in baseline FFA–

HPC connectivity, post-XY connectivity was also subtracted
from post-AB connectivity for each participant (12). The re-
sulting difference scores were then related to performance as
above. The difference scores showed a significant relationship
with BC (r32 = 0.40, P = 0.018) and AC (r32 = 0.38, P = 0.025)
performance after controlling for general associative memory,
as well as significant individual relationships with BC (r33 = 0.35,
P = 0.040) and AC (r33 = 0.33, P = 0.052) performance. There
was no association between FFA–HPC connectivity and XY
performance (r33 = 0.13, P = 0.444). BC and XY (Hotelling–
Williams test; t32 = 2.10, P = 0.043); and AC and XY (Hotelling–
Williams test; t32 = 1.98, P = 0.056) relationships with FFA–HPC
connectivity also differed from one another.
Seed-based analysis. This analysis interrogated activation within
MTL (inclusive of HPC, ERC, PRC, and PHC) for voxels that
showed rest-phase connectivity with FFA that related to sub-
sequent performance. We performed this analysis to account for
the potential heterogeneity in response profiles within the MTL,
thereby complementing above ROI approach above. Each
participant’s high-pass filtered functional data were spatially
smoothed (5-mm FWHM). The FFA timeseries and its first
temporal derivative were entered into a GLM, along with
motion-related confound regressors (motion parameters, FD,
DVARS, and their temporal derivatives and timepoints with
excessive motion). The resulting parameter estimate image for
each participant reflected the degree to which activation in each
MTL voxel tracked with FFA activation across the post-AB rest
scan. We then warped these images to the 1-mm MNI template
using ANTS (6) and combined them across participants using
a group-level GLM as follows: We constructed the group-level
model with both BC and XY performance as covariates. We
were specifically interested in those MTL voxels whose connec-
tivity with FFA was modulated by individual differences in BC
performance (after covarying out XY performance), as well as
those voxels that tracked more with BC than XY performance
(BC > XY contrast). Voxelwise statistics were calculated within
MTL using permutation tests implemented in FSL. We first
applied an uncorrected voxelwise threshold of P < 0.025 to the
group statistics images. We then corrected for multiple compar-
isons within the MTL using a small volume correction procedure
to determine the cluster size corresponding to a cluster-corrected
threshold of P < 0.05. This calculation was carried out using
3dClustSim, part of AFNI (14). The 3dClustSim performs Monte
Carlo simulations that take into account the size and shape of the
ROI as well as the smoothness of the data in determining
a critical cluster size. Cluster sizes that occurred with a proba-
bility of <0.05 across 2,000 simulations were considered statis-
tically significant. This procedure yielded a critical cluster size of
326 (1 mm3) voxels for the MTL ROI (Fig. 3B and Fig. S5). We
also repeated the seed-based analysis on the residuals from the
nuisance regressed analysis described above. As motion-related

nuisance signals had already been removed, each model included
only the FFA timeseries and its temporal derivative. All other
steps were identical to those carried out on the high-pass filtered
data (Fig. S4).

Multiple Regression Analysis. Multiple linear regression analyses
were performed to further assess the degree to which reactivation
and connectivity indices were independently related to perfor-
mance. Two regression models were run: one with BC perfor-
mance as the dependent variable and one with AC performance
as the dependent variable. Reactivation, connectivity, and XY
performance measures for each participant were entered into
the regression as predictors. Participants were treated as a ran-
dom effect. These findings are presented in Results, Multiple
Regression.

Univariate Analysis. Analysis of fMRI data from the memory task
was carried out using FEAT (fMRI Expert Analysis Tool) version
6.00, part of FSL. As with the localizer data, the following pre-
statistics processing was applied: grand-mean intensity normali-
zation of the entire 4D dataset by a single multiplicative factor;
high-pass temporal filtering (Gaussian-weighted least-squares
straight line fitting, with sigma = 64 s); and spatial smoothing
(5-mm FWHM). FILM prewhitening was used. Encoding trials
were sorted based on subsequent memory in the cued recall test
to create four conditions: BC encoding trials that were later
correct, BC encoding trials that were later incorrect, XY en-
coding trials that were later correct, and XY encoding trials that
were later incorrect. Stimulus presentations were modeled as
events with 3.5-s durations, with one regressor for each of the
four conditions. The model was convolved with the canonical
(double gamma) HRF. Motion parameters calculated during the
motion correction step and their temporal derivatives were
added as additional regressors of no interest. As described
above, FD, DVARS, and individual regressors for time points
exceeding FD and DVARS thresholds were added to the model
to additionally account for motion effects (7, 8). Temporal
filtering was applied to the model.
After modeling functional data within each run, the resulting

statistics images were warped to the 1-mm MNI template brain
using ANTS (6). The warped images were combined across en-
coding runs for each participant using fixed effects and then
across the group using mixed effects. Correction for multiple
comparisons was carried out on group-level voxelwise statistical
images according to cluster-based Gaussian random field theory
(15), with a cluster-forming threshold of z > 2.3 and a whole-
brain corrected cluster significance level of P < 0.05.
In addition to a group mean model, two models with covariates

were created to investigate how individual differences in rest-
phase reactivation and functional connectivity relate to sub-
sequent neural activation during learning of BC and XY pairs.
For each of these two models, a second regressor was created
containing FFA reactivation and FFA–HPC connectivity indices,
respectively, for every participant. We then examined regions
whose activation was modulated by these covariates. Correction
for multiple comparisons was performed as described above.

Delay and Encoding Order Analyses. Participants experienced
a variable delay between AB pretraining and the post-AB
encoding rest scan (median delay length = 22 min, SEM = 1.76,
range = 15–58). Moreover, as encoding order was counter-
balanced across participants, there was also a difference in time
between the initial learning of the AB pairs and subsequent
encoding over the overlapping BC pairs. To rule out these po-
tential confounds, we performed two analyses. First, we assessed
the continuous relationship between delay duration and FFA
reactivation and delay duration and FFA–HPC connectivity
measures using Pearson’s correlation. There was no relationship
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across the group between duration of the delay and the post-AB
neural measures of interest (FFA reactivation: r33 = 0.10, P = 0.58;
FFA–HPC connectivity: r33 = 0.19, P = 0.27), suggesting that the
length of the delay did not significantly influence the degree to
which these processes were engaged.
We also performed one-way analyses of covariance (ANCOVA)

to interrogate whether the observed relationships between neural
measures and performance differed significantly as a function of
encoding order. The neural measure (FFA reactivation or FFA–

HPC connectivity) served as the predictor variable; the behav-
ioral measure served as the response. Encoding order was the

grouping variable. Encoding order did not significantly impact
the relationships between connectivity (main effects and inter-
actions; all F1,31 < 1.02, all P > 0.32) or reactivation (main effects
and interactions; all F1,31 < 0.32, all P > 0.57) and BC or AC
performance controlling for XY performance. Individual rela-
tionships between reactivation and performance (BC: both F1,31 <
0.49, P > 0.49; AC: both F1,31 < 0.64, P > 0.43; XY: both F1,31 <
1.40, P > 0.24) and FFA–HPC connectivity and performance
(BC: both F1,31 < 0.58, P > 0.45; AC: both F1,31 < 0.32, P > 0.58;
XY: both F1,31 < 0.14, P > 0.72) were also not modulated by
encoding order.

1. Preston AR, Shrager Y, Dudukovic NM, Gabrieli JDE (2004) Hippocampal contribution to the
novel use of relational information in declarative memory. Hippocampus 14(2):148–152.

2. Zeithamova D, Preston AR (2010) Flexible memories: Differential roles for medial
temporal lobe and prefrontal cortex in cross-episode binding. J Neurosci 30(44):
14676–14684.

3. Zeithamova D, Dominick AL, Preston AR (2012) Hippocampal and ventral medial
prefrontal activation during retrieval-mediated learning supports novel inference.
Neuron 75(1):168–179.

4. Kuhl BA, Rissman J, Chun MM, Wagner AD (2011) Fidelity of neural reactivation reveals
competition between memories. Proc Natl Acad Sci USA 108(14):5903–5908.

5. Desikan RS, et al. (2006) An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):
968–980.

6. Avants BB, et al. (2011) A reproducible evaluation of ANTs similarity metric perfor-
mance in brain image registration. Neuroimage 54(3):2033–2044.

7. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but
systematic correlations in functional connectivity MRI networks arise from subject
motion. Neuroimage 59(3):2142–2154.

8. Schonberg T, et al. (2014) Changing value through cued approach: An automatic
mechanism of behavior change. Nat Neurosci 17(4):625–630.

9. Hanke M, et al. (2009) PyMVPA: A python toolbox for multivariate pattern analysis of
fMRI data. Neuroinformatics 7(1):37–53.

10. Hotelling H (1940) The selection of variates for use in prediction with some comments
on the general problem of nuisance parameters. Ann Math Stat 11:271–283.

11. Williams EJ (1959) The comparison of regression variables. J R Stat Soc, B 21:396–399.
12. Tambini A, Ketz N, Davachi L (2010) Enhanced brain correlations during rest are

related to memory for recent experiences. Neuron 65(2):280–290.
13. Fox MD, et al. (2005) The human brain is intrinsically organized into dynamic, anti-

correlated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678.
14. Cox RW (1996) AFNI: Software for analysis and visualization of functional magnetic

resonance neuroimages. Comput Biomed Res 29(3):162–173.
15. Worsley KJ, et al. (2002) A general statistical analysis for fMRI data. Neuroimage

15(1):1–15.

1 2 3/4-0.4 -0.2 0.40.20
0

1

2

3

4

5

6

7

XY-BC performance

Fr
eq

ue
nc

y

a b

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3/4

B
C

 p
er

fo
rm

an
ce

0.25

0.3

0.35

0.4

0.45

0.5
A

C
 p

er
fo

rm
an

ce
* *

Block of first AB recall (strength) 
weakerstronger

Block of first AB recall (strength) 
weakerstronger

Fig. S1. Behavioral performance. (A) Histogram depicting distribution of behavioral interference in our sample (displayed as the difference between XY and
BC performance). Positive values indicate better XY than BC performance, evidencing interference of prior AB knowledge on new encoding; negative values
indicate better BC than XY performance, indicating AB knowledge-related facilitation. (B) BC performance (orange; Left) and AC performance (pink; Right) as
a function of AB memory strength. AB pairs were sorted according to whether they were correctly recalled initially on the first, second, or third/fourth
pretraining test block (x axis). BC and AC performance was then computed separately for these groups of triads (y axis). There was a significant linear effect of
block of first AB recall on both BC and AC performance; participants demonstrated better memory for those AB pairs learned earlier in the pretraining phase,
suggesting that strong AB memories facilitate new learning. Significant linear effects denoted by asterisks.
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Fig. S2. Relationship between FFA reactivation and memory over time. (Upper row) Relationship between FFA reactivation and BC performance controlling
for XY performance over time. For each 60-TR window, we calculated the partial correlation between mean classifier evidence for all four stimulus categories
(face, Left; object, scrambled object, and fixation baseline, Right) in FFA and BC performance, controlling for XY performance. Partial correlation values
(r) were Fisher transformed (z) and assigned to the middle TR of the window. Data are plotted as partial correlation values (y axis) over time (middle TR; x axis).
Face evidence (Left; green) was significantly related to BC performance (controlling for XY performance) at the beginning of the rest scan; this relationship
decreased over time. (Right) Relationship between classifier evidence for remaining stimulus categories (Right; object, red; scrambled object, purple; fixation
baseline, cyan) and performance. There was no significant relationship between evidence for any of these stimulus types and BC performance controlling for
XY across the duration of the rest scan. (Lower row) Individual relationships between FFA reactivation and BC and XY performance over time. We calculated
separate Pearson’s correlations between mean classifier evidence for faces in FFA and BC performance (Left) and XY performance (Right) for each window. As
above, correlation values (r) were Fisher transformed and assigned to the middle TR. Data are plotted as correlation values (y axis) over time (middle TR; x axis).
The significant partial correlation (Upper Left, early in scan) was driven by a positive relationship with BC performance early in the scan and no relationship to
XY performance. For all plots, shaded region represents 95% bootstrapped confidence intervals.
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Fig. S3. Individual relationships between reactivation and performance for FFA (A) and posterior fusiform gyrus (B) ROIs. (A) Relationships between FFA
reactivation (x axes) and BC (Left; orange), AC (Center; pink), and XY (Right; green) performance (y axes). BC and AC performance were positively (although
nonsignificantly) associated with reactivation; XY was negatively (although nonsignificantly) associated with reactivation. (B) Relationships between posterior
fusiform reactivation and performance. Data are displayed as in A. Both BC and AC performance showed significantly positive relationships with reactivation,
such that greater reactivation was associated with superior performance. There was also a numerically positive but nonsignificant relationship with XY. For
both A and B, results were similar after subtracting baseline reactivation levels derived from the post-XY encoding rest period (not depicted) (see SI Methods
and Results, Reactivation: Pattern Classification Analysis). All statistics reflect Pearson’s correlations.
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Fig. S4. MTL regions for which connectivity with FFA during rest is significantly more predictive of BC than XY performance. These results depict analysis
performed on rest data following nuisance regression. This contrast revealed a cluster in left hippocampus (−17, −30, −20) that overlapped with the results
from the high-pass filtered rest data (Fig. 3B). Cluster is significant after correction for multiple comparisons within the MTL. Color bar indicates uncorrected
voxelwise P value. Coordinates are in millimeters.
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Fig. S5. MTL regions for which connectivity with FFA during rest significantly predicts BC performance. Left hippocampus (−18, −29, −13) was the only region
for which greater post-AB rest-phase connectivity with FFA was associated with superior BC performance. Cluster is significant after correction for multiple
comparisons within the MTL. No regions showed a positive relationship with XY performance. Color bar indicates uncorrected voxelwise P value. Coordinates
are in millimeters.
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Fig. S6. Encoding activation in left fusiform gyrus relates to memory for overlapping BC but not XY pairs. Parameter estimates were extracted from regions of
left fusiform gyrus identified as showing a significant subsequent recall by condition interaction (correct > incorrect × BC > XY) displayed in Fig. 4A. Estimates
were converted to percent signal and are shown separately for BC pairs subsequently remembered (dark orange); BC pairs subsequently forgotten (light
orange); XY pairs subsequently remembered (dark green); and XY pairs subsequently forgotten (light green). The significant interaction in this region was
driven by a strong subsequent memory effect for BC pairs (paired t test; t34 = 6.23, P = 4.4 × 10−7; dark vs. light orange bars) but not XY pairs (t34 = 0.49,
P = 0.625; dark vs. light green bars). Asterisk indicates significant difference at P < 0.05.
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